Sub-Retinal Delivery of Human Embryonic Stem Cell Derived Photoreceptor Progenitors in rd10 Mice.

J Vis Exp

Singapore National Eye Centre, Singapore Eye Research Institute; Ophthalmology and Visual Sciences Academic Clinical Program, DUKE-NUS Medical School; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore;

Published: October 2023

Regeneration of photoreceptor cells using human pluripotent stem cells is a promising therapy for the treatment of both hereditary and aging retinal diseases at advanced stages. We have shown human recombinant retina-specific laminin isoform matrix is able to support the differentiation of human embryonic stem cells (hESCs) to photoreceptor progenitors. In addition, sub-retinal injection of these cells has also shown partial restoration in the rd10 rodent and rabbit models. Sub-retinal injection is known to be an established method that has been used to deliver pharmaceutical compounds to the photoreceptor cells and retinal pigmented epithelial (RPE) layer of the eye due to its proximity to the target space. It has also been used to deliver adeno-associated viral vectors into the sub-retinal space to treat retinal diseases. The sub-retinal delivery of pharmaceutical compounds and cells in the murine model is challenging due to the constraint in the size of the murine eyeball. This protocol describes the detailed procedure for the preparation of hESC-derived photoreceptor progenitor cells for injection and the sub-retinal delivery technique of these cells in genetic retinitis pigmentosa mutant, rd10 mice. This approach allows cell therapy to the targeted area, in particular the outer nuclear layer of the retina, where diseases leading to photoreceptor degeneration occur.

Download full-text PDF

Source
http://dx.doi.org/10.3791/65848DOI Listing

Publication Analysis

Top Keywords

sub-retinal delivery
12
human embryonic
8
embryonic stem
8
photoreceptor progenitors
8
rd10 mice
8
cells
8
photoreceptor cells
8
stem cells
8
retinal diseases
8
sub-retinal injection
8

Similar Publications

Sub-Retinal Delivery of Human Embryonic Stem Cell Derived Photoreceptor Progenitors in rd10 Mice.

J Vis Exp

October 2023

Singapore National Eye Centre, Singapore Eye Research Institute; Ophthalmology and Visual Sciences Academic Clinical Program, DUKE-NUS Medical School; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore;

Regeneration of photoreceptor cells using human pluripotent stem cells is a promising therapy for the treatment of both hereditary and aging retinal diseases at advanced stages. We have shown human recombinant retina-specific laminin isoform matrix is able to support the differentiation of human embryonic stem cells (hESCs) to photoreceptor progenitors. In addition, sub-retinal injection of these cells has also shown partial restoration in the rd10 rodent and rabbit models.

View Article and Find Full Text PDF

Retinal cells are irreparably damaged by diseases such as age-related macular degeneration (AMD). A promising method to restore partial or whole vision is through cell-based transplantation to the damaged location. However, cell transplantation using conventional vitreous surgery is an invasive procedure that may induce infections and has a high failure rate of cell engraftment.

View Article and Find Full Text PDF

Permeability, anti-inflammatory and anti-VEGF profiles of steroidal-loaded cationic nanoemulsions in retinal pigment epithelial cells under oxidative stress.

Int J Pharm

April 2022

Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal. Electronic address:

Age-related macular degeneration (AMD) is defined as a degenerative, progressive and multifactorial disorder that affects the macula with a complex etiology. The retinal pigment epithelium is a monolayer of cells that has the function to separate the surface of the choroid from the neural retina that is involved in the signal transduction leading to vision. The blood-aqueous barrier and the blood retinal barrier limit the permeation of drugs into the retina and thereby reducing their efficacy.

View Article and Find Full Text PDF

Nonfibrillar amyloid-β oligomers (AβOs) are a major component of drusen, the sub-retinal pigmented epithelium (RPE) extracellular deposits characteristic of age-related macular degeneration (AMD), a common cause of global blindness. We report that AβOs induce RPE degeneration, a clinical hallmark of geographic atrophy (GA), a vision-threatening late stage of AMD that is currently untreatable. We demonstrate that AβOs induce activation of the NLRP3 inflammasome in the mouse RPE in vivo and that RPE expression of the purinergic ATP receptor P2RX7, an upstream mediator of NLRP3 inflammasome activation, is required for AβO-induced RPE degeneration.

View Article and Find Full Text PDF

Characterization of Gelatin/Gellan Gum/Glycol Chitosan Ternary Hydrogel for Retinal Pigment Epithelial Tissue Reconstruction Materials.

ACS Appl Bio Mater

September 2020

Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.

The cellular transplantation approach to treat damaged or diseased retina is limited because of poor survival, distribution, and integration of cells after implantation to the sub-retinal space. To overcome this, it is important to develop a cell delivery system. In this study, a ternary hydrogel of gelatin (Ge)/gellan gum (GG)/glycol chitosan (CS) is suggested as a cell carrier for retinal tissue engineering (TE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!