Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Urban areas in the US are increasingly focused on mass casualty incident (MCI) response. We simulated prehospital triage scenarios and hypothesized that using hospital-based blood product inventories for on-scene triage decisions would minimize time to treatment.
Study Design: Discrete event simulations modeled MCI casualty injury and patient flow after a simulated blast event in Boston, MA. Casualties were divided into moderate (Injury Severity Score 9 to 15) and severe (Injury Severity Score >15) based on injury patterns. Blood product inventories were collected from all hospitals (n = 6). The primary endpoint was the proportion of casualties managed with 1:1:1 balanced resuscitation in a target timeframe (moderate, 3.5 U red blood cells in 6 hours; severe, 10 U red blood cells in 1 hour). Three triage scenarios were compared, including unimpeded casualty movement to proximate hospitals (Nearest), equal distribution among hospitals (Equal), and blood product inventory-based triage (Supply-Guided).
Results: Simulated MCIs generated a mean ± SD of 302 ± 7 casualties, including 57 ± 2 moderate and 15 ± 2 severe casualties. Nearest triage resulted in significantly fewer overall casualties treated in the target time (55% vs Equal 86% vs Supply-Guided 91%, p < 0.001). These differences were principally due to fewer moderate casualties treated, but there was no difference among strategies for severe casualties.
Conclusions: In this simulation study comparing different triage strategies, including one based on actual blood product inventories, nearest hospital triage was inferior to equal distribution or a Supply-Guided strategy. Disaster response leaders in US urban areas should consider modeling different MCI scenarios and casualty numbers to determine optimal triage strategies for their area given hospital numbers and blood product availability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/XCS.0000000000000894 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!