Immune cells can protect against tumor progression by killing cancer cells, while aberrant expression of the immune checkpoint protein PD-L1 (programmed death ligand 1) in cancer cells facilitates tumor immune escape and inhibits anti-tumor immunotherapy. As a serine/threonine kinase, CK2 (casein kinase 2) regulates tumor progression by multiple pathways, while it is still unclear the effect of CK2 on tumor immune escape. Here it is found that ING4 induced PD-L1 autophagic degradation and inhibites non-small cell lung cancer (NSCLC) immune escape by increasing T cell activity. However, clinical analysis suggests that high expression of CK2 correlates with low ING4 protein level in NSCLC. Further analysis shows that CK2 induce ING4-S150 phosphorylation leading to ING4 ubiquitination and degradation by JFK ubiquitin ligase. In contrast, CK2 gene knockout increases ING4 protein stability and T cell activity, subsequently, inhibites NSCLC immune escape. Furthermore, the combined CK2 inhibitor with PD-1 antibody effectively enhances antitumor immunotherapy. These findings provide a novel strategy for cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700192PMC
http://dx.doi.org/10.1002/advs.202304068DOI Listing

Publication Analysis

Top Keywords

immune escape
16
non-small cell
8
cell lung
8
lung cancer
8
cancer immunotherapy
8
tumor progression
8
cancer cells
8
tumor immune
8
nsclc immune
8
cell activity
8

Similar Publications

The significance of endogenous immune surveillance in acute lymphoblastic leukemia (ALL) remains controversial. Using clinical B-ALL samples and a novel mouse model, we show that neoantigen-specific CD4+ T cells are induced to adopt type-1 regulatory (Tr1) function in the leukemia microenvironment. Tr1s then inhibit cytotoxic CD8+ T cells, preventing effective leukemia clearance.

View Article and Find Full Text PDF

The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).

View Article and Find Full Text PDF

Unlabelled: The T cell receptor (TCR) repertoire of intestinal CD4+ T cells is enriched for specificity towards microbiome-encoded epitopes shared among many microbiome members, providing broad microbial reactivity from a limited pool of cells. These cells actively coordinate mutualistic host-microbiome interactions, yet many epitopes are shared between gut symbionts and closely related pathobionts and pathogens. Given the disparate impacts of these agents on host health, intestinal CD4+ T cells must maintain strain-level discriminatory power to ensure protective immunity while preventing inappropriate responses against symbionts.

View Article and Find Full Text PDF

Tumor heterogeneity is the substrate for tumor evolution and the linchpin of treatment resistance. Cancer cell heterogeneity is largely attributed to distinct genetic changes within each cell population. However, the widespread epigenome repatterning that characterizes most cancers is also highly heterogenous within tumors and could generate cells with diverse identities and malignant features.

View Article and Find Full Text PDF

FLT3 mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and are associated with poor prognosis. Significant advancements have been made in developing FLT3 inhibitors (FLT3Is), such as quizartinib, which have improved treatment outcomes in both newly diagnosed and relapsed/refractory AML. Resistance to FLT3Is remains a major clinical challenge, driven by diverse mechanisms including FLT3 point mutations, cellular escape pathways, and the influence of the bone marrow microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!