Polariton chemistry may provide a new means to control molecular reactivity, permitting remote, reversible modification of reaction energetics, kinetics, and product yields. A considerable body of experimental and theoretical work has already demonstrated that strong coupling between a molecular vibrational mode and the confined electromagnetic field of an optical cavity can alter chemical reactivity without external illumination. However, the mechanisms underlying cavity-altered chemistry remain unclear in large part because the experimental systems examined previously are too complex for detailed analysis of their reaction dynamics. Here, we experimentally investigate photolysis-induced reactions of cyanide radicals with strongly-coupled chloroform (CHCl3) solvent molecules and examine the intracavity rates of photofragment recombination, solvent complexation, and hydrogen abstraction. We use a microfluidic optical cavity fitted with dichroic mirrors to facilitate vibrational strong coupling (VSC) of the C-H stretching mode of CHCl3 while simultaneously permitting optical access at visible wavelengths. Ultrafast transient absorption experiments performed with cavities tuned on- and off-resonance reveal that VSC of the CHCl3 C-H stretching transition does not significantly modify any measured rate constants, including those associated with the hydrogen abstraction reaction. This work represents, to the best of our knowledge, the first experimental study of an elementary bimolecular reaction under VSC. We discuss how the conspicuous absence of cavity-altered effects in this system may provide insights into the mechanisms of modified ground state reactivity under VSC and help bridge the divide between experimental results and theoretical predictions in vibrational polariton chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0167410 | DOI Listing |
Unlabelled: Cytoplasmic proteins must recruit to membranes to function in processes such as endocytosis and cell division. Many of these proteins recognize not only the chemical structure of the membrane lipids, but the curvature of the surface, binding more strongly to more highly curved surfaces, or 'curvature sensing'. Curvature sensing by amphipathic helices is known to vary with membrane bending rigidity, but changes to lipid composition can simultaneously alter membrane thickness, spontaneous curvature, and leaflet symmetry, thus far preventing a systematic characterization of lipid composition on such curvature sensing through either experiment or simulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFBirth Defects Res
January 2025
Department of Zoology, University of Calcutta, Kolkata, India.
Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.
View Article and Find Full Text PDFNat Mater
January 2025
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
The interconversion between singlet and triplet spin states of photogenerated radical pairs is a genuine quantum process, which can be harnessed to coherently manipulate the recombination products through a magnetic field. This control is central to such diverse fields as molecular optoelectronics, quantum sensing, quantum biology and spin chemistry, but its effect is typically fairly weak in pure molecular systems. Here we introduce hybrid radical pairs constructed from semiconductor quantum dots and organic molecules.
View Article and Find Full Text PDFSci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!