This paper describes the latest development in the classification stage of our Speech Sound Disorder (SSD) Screening algorithm and presents the results achieved by using two classifier models: the Classification and Regression Tree (CART)-based model versus the Single Decision Hyperplane-based Linear Support Vector Machine (SVM) model. For every single speech sound in medial position, 10 features extracted from the audio samples along with an 11th feature representing the validation of the (mis)pronunciation by the Speech Language Pathologist (SLP) were fed into the 2 classifiers to compare and discuss their performance. The accuracy achieved by the two classifiers on a data test size of 30% of the analyzed samples was 98.2% for the Linear SVM classifier, and 100% for the Decision Tree classifier, which are optimal results that encourage our quest for a sound rationale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI230742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!