Rheumatoid arthritis is a common disease which affects the joints of the wrist, fingers, feet and in the end the daily activities. Nowadays, gestures and virtual reality are used in many activities supporting recovery, games, learning as technology is present more and more in different fields. This paper presents results related to the grip movement detected by a Leap Motion device using binary classification and machine learning algorithms. We used 2 models to compare the results: Naïve Bayes and Random Forest Classifier. The metrics for comparison were: accuracy, precision, recall and f1-score. Also, we create a confusion matrix for a clear visualization of the results. We used 5000 data to train the algorithm and 1500 data to test. The accuracy and the precision were bigger than 97% in all the cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI230740 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!