Introduction: Although carbapenemases are frequently reported in resistant clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria.
Methods: A total of 980 whole genome sequences of were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango.
Results: Exhibiting the highest detection rate, codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the -predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of Q239L and D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance.
Conclusion: The study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in , shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587612 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1271733 | DOI Listing |
EmrE is a bacterial membrane-embedded multidrug transporter that functions as an asymmetric homodimer. EmrE is implicated in antibiotic resistance, but is now known to confer either resistance or susceptibility depending on the identity of the small molecule substrate. Here, we report both solution- and solid-state NMR assignments of S64V-EmrE at pH 5.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
Cancer is a group of dynamic diseases characterized by uncontrollable growth and spread of cells. The heterogenic nature of cancer hinders the abolishment of cancer resulting in a narrow therapeutic index, the capacity of drug efflux, multidrug resistance, and unacceptable side effects. The major challenge in the treatment of malignancies is multidrug resistance (MDR).
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Norton Infectious Diseases Institute, Norton Healthcare, Louisville, Kentucky, USA.
Omadacycline is a novel antimicrobial belonging to the tetracycline class. It has the ability to evade both efflux and ribosomal methylation types of resistance and therefore has an expanded spectrum compared to other tetracycline agents. Omadacycline is active against a number of multidrug-resistant bacteria, including macrolide and doxycycline-resistant methicillin-resistant (MRSA), vancomycin-resistant Enterococcus, and several enteric gram-negative bacilli.
View Article and Find Full Text PDFFront Antibiot
January 2024
Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.
View Article and Find Full Text PDFFront Antibiot
September 2024
Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States.
is a foodborne pathogenic bacterium that causes salmonellosis worldwide. Also, is considered a serious problem for food safety and public health. Several antimicrobial classes including aminoglycosides, tetracyclines, phenols, and β-Lactams are used to treat infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!