The proliferation and differentiation of bone mesenchymal stem cells (BMSCs) are the key properties of bone tissue engineering for biomaterials. In this study, hydroxyapatite (HA) coated porous carbon nanofibres (PCNFs) were prepared to load dexamethasone (DEX) and further improve the differentiation ability of the BMSCs. Various characterisations were applied to reveal the DEX loading efficacy and biocompatibility, especially the differentiation strength. The results showed that HA could be successfully coated on the PCNFs by pretreating the surface using PEG conjugation. With an increase of HA, the particle diameter increased and the DEX loading decreased. experiments proved higher cell viability, alkaline phosphatase (ALP) activity, calcium nodule secretion ability and the RUNX2 protein expression, indicating that the as-prepared was of great biocompatibility and optimised osteoconductivity, which was attributed to the componential imitation to natural bone and the accelerated BMSCs differentiation. Consequently, the novel DEX loaded and HA coated PCNFs can provide potential applications in bone tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588370 | PMC |
http://dx.doi.org/10.1039/d3ra02107f | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Department of Pharmaceutics, Damanhour University, P.O. Box 22511, Damanhour, Egypt.
Rheumatoid arthritis is a highly prevalent debilitating condition linked to inflammation. The effectiveness of the present therapeutic techniques is constrained; so, there is an urgent requirement for a novel nanoplatform entailing drugs with proven efficacy. The current work highlighted the development of dexamethasone and luteolin co-encapsulated hyalurosomes (LUT-DEX hyalurosomes).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom, Egypt.
A serious challenge of the chronic administration of dexamethasone (DEX) is a delay in wound healing. Thus, this study aimed to investigate the potential of Tadalafil (TAD)-loaded proniosomal gel to accelerate the healing process of skin wounds in DEX-challenged rabbits. Skin wounds were induced in 48 rabbits of 4 groups (n = 12 per group) and skin wounds were treated by sterile saline (control), TAD-loaded proniosomal gel topically on skin wound, DEX-injected rabbits, and DEX+TAD-loaded proniosomal gel for 4 weeks.
View Article and Find Full Text PDFJ Control Release
January 2025
School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China. Electronic address:
Corneal inflammation, a condition that can potentially lead to blindness, is often treated with topical eye drops. However, the limited ocular drug bioavailability of the eye drops necessitates frequent dosing. Herein, a nanoemulsion-based pseudopolyrotaxane hydrogel was fabricated to improve corneal bioavailability and thereby suppress inflammation.
View Article and Find Full Text PDFBiomater Transl
September 2024
School of Medical Technology, Beijing Institute of Technology, Beijing, China.
Skull defects are common in the clinical practice of neurosurgery, and they are easily complicated by encephalitis, which seriously threatens the life and health safety of patients. The treatment of encephalitis is not only to save the patient but also to benefit the society. Based on the advantages of injectable hydrogels such as minimally invasive surgery, self-adaptation to irregularly shaped defects, and easy loading and delivery of nanomedicines, an injectable hydrogel that can be crosslinked in situ at the ambient temperature of the brain for the treatment of encephalitis caused by cranial defects is developed.
View Article and Find Full Text PDFRSC Adv
December 2024
Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology 6th of October City Giza Egypt
Patients with rheumatoid arthritis (RA), an inflammatory illness that affects the synovial joints, have a much worse quality of life. Mostly, oral or injectable formulations are used to treat RA, underscoring the critical need for an innovative medication delivery method to enhance therapeutic outcomes and patient compliance. The present study integrated 3D bioprinting and electrospinning technologies to create a unique double-layered transdermal patch (TDDP) for the treatment of RA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!