A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The evolution of antiseizure medication therapy selection in adults: Is artificial intelligence -assisted antiseizure medication selection ready for prime time? | LitMetric

Antiseizure medications (ASMs) are the mainstay of symptomatic epilepsy treatment. The primary goal of pharmacotherapy with ASMs in epilepsy is to achieve complete seizure remission while minimizing therapy-related adverse events. Over the years, more ASMs have been introduced, with approximately 30 now in everyday use. With such a wide variety, much guidance is needed in choosing ASMs for initial therapy, subsequent replacement monotherapy, or adjunctive therapy. The specific ASMs are typically tailored by the patient's related factors, including epilepsy syndrome, age, sex, comorbidities, and ASM characteristics, including the spectrum of efficacy, pharmacokinetic properties, safety, and tolerability. Weighing these key clinical variables requires experience and expertise that may be limited. Furthermore, with this approach, patients may endure multiple trials of ineffective treatments before the most appropriate ASM is found. A more reliable way to predict response to different ASMs is needed so that the most effective and tolerated ASM can be selected. Soon, alternative approaches, such as deep machine learning (ML), could aid the individualized selection of the first and subsequent ASMs. The recognition of epilepsy as a network disorder and the integration of personalized epilepsy networks in future ML platforms can also facilitate the prediction of ASM response. Augmenting the conventional approach with artificial intelligence (AI) opens the door to personalized pharmacotherapy in epilepsy. However, more work is needed before these models are ready for primetime clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586013PMC
http://dx.doi.org/10.1177/11795735231209209DOI Listing

Publication Analysis

Top Keywords

antiseizure medication
8
artificial intelligence
8
asms
7
epilepsy
6
evolution antiseizure
4
medication therapy
4
therapy selection
4
selection adults
4
adults artificial
4
intelligence -assisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!