Neurodevelopmental Disorders (NDDs) represent a significant healthcare and economic burden for families and society. Technology, including AI and digital technologies, offers potential solutions for the assessment, monitoring, and treatment of NDDs. However, further research is needed to determine the effectiveness, feasibility, and acceptability of these technologies in NDDs, and to address the challenges associated with their implementation. In this work, we present the application of social robotics using a Pepper robot connected to the OpenAI system (Chat-GPT) for real-time dialogue initiation with the robot. After describing the general architecture of the system, we present two possible simulated interaction scenarios of a subject with Autism Spectrum Disorder in two different situations. Limitations and future implementations are also provided to provide an overview of the potential developments of interconnected systems that could greatly contribute to technological advancements for Neurodevelopmental Disorders (NDD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585023PMC
http://dx.doi.org/10.3389/fpsyg.2023.1232177DOI Listing

Publication Analysis

Top Keywords

robot connected
8
neurodevelopmental disorders
8
social robot
4
connected chatgpt
4
chatgpt improve
4
improve cognitive
4
cognitive functioning
4
functioning asd
4
asd subjects
4
subjects neurodevelopmental
4

Similar Publications

A study on hybrid-architecture deep learning model for predicting pressure distribution in 2D airfoils.

Sci Rep

January 2025

School of Aerospace Engineering, Gyeongsang National University, Jinju-si, 52828, Gyeongsangnam-do, Republic of Korea.

This study introduces a novel deep learning-based technique for predicting pressure distribution images, aimed at application in image-based approximate optimal design. The proposed approach integrates both unsupervised and supervised learning paradigms, employing autoencoders (AE) for the unsupervised component and fully connected neural networks (FNN) for the supervised component. A surrogate model based on 2D image data was developed, enabling a comparative analysis of three distinct methods: the conventional AE, the convolutional autoencoder (CAE), and a hybrid CAE, which combines the CAE with a conventional AE.

View Article and Find Full Text PDF

The demand for intensive care units (ICUs) is steadily increasing, yet there is a relative shortage of medical staff to meet this need. Intensive care work is inherently heavy and stressful, highlighting the importance of optimizing these units' working conditions and processes. Such optimization is crucial for enhancing work efficiency and elevating the level of diagnosis and treatment provided in ICUs.

View Article and Find Full Text PDF

Conductive metal-organic frameworks (MOFs) are crystalline, intrinsically porous materials that combine remarkable electrical conductivity with exceptional structural and chemical versatility. This rare combination makes these materials highly suitable for a wide range of energy-related applications. However, the electrical conductivity in MOF-based devices is often limited by the presence of different types of structural disorder.

View Article and Find Full Text PDF

Tri-Prism Origami Enabled Soft Modular Actuator for Reconfigurable Robots.

Soft Robot

January 2025

Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.

Soft actuators hold great potential for applications in surgical operations, robotic manipulation, and prosthetic devices. However, they are limited by their structures, materials, and actuation methods, resulting in disadvantages in output force and dynamic response. This article introduces a soft pneumatic actuator capable of bending based on triangular prism origami.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!