Dairy is an economically significant industry that caters to the huge demand for food products in people's lives. To remain profitable, farmers need to manage their farms and the health of the dairy cows in their herds. There are, however, many risks to cow health that can lead to significant challenges to dairy farm management and have the potential to lead to significant losses. Such risks include cow udder infections (i.e., mastitis) and cow lameness. As automation and data recording become more common in the agricultural sector, dairy farms are generating increasing amounts of data. Recently, these data are being used to generate insights into farm and cow health, where the objective is to help farmers manage the health and welfare of dairy cows and reduce losses from cow health issues. Despite the level of data generation on dairy farms, this information is often difficult to access due to a lack of a single, central organization to collect data from individual farms. The prospect of such an organization, however, raises questions about data ownership, with some farmers reluctant to share their farm data for privacy reasons. In this study, we describe a new architecture designed for the dairy industry that focuses on facilitating access to data from farms in a decentralized fashion. This has the benefit of keeping the ownership of data with dairy farmers while bringing data together by providing a common and uniform set of protocols. Furthermore, this architecture will allow secure access to the data by research groups and product development groups, who can plug in new projects and applications built across the data. No similar framework currently exists in the dairy industry, and such a data mesh can help industry stakeholders by bringing the dairy farms of a country together in a decentralized fashion. This not only helps farmers, dairy researchers, and product builders but also facilitates an overview of all dairy farms which can help governments to decide on regulations to improve the dairy industry at a national level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586498PMC
http://dx.doi.org/10.3389/frai.2023.1209507DOI Listing

Publication Analysis

Top Keywords

dairy industry
16
dairy farms
16
dairy
14
data
14
cow health
12
industry data
8
farmers manage
8
dairy cows
8
access data
8
decentralized fashion
8

Similar Publications

Cyanobacterial phycoremediation: a sustainable approach to dairy wastewater management.

Environ Technol

January 2025

Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.

The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.

View Article and Find Full Text PDF

Diet quality indicators and organic food consumption in mothers of young children.

J Sci Food Agric

January 2025

Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.

Background: The health benefits of organic food provide one reason for consuming it. Various studies have shown that regular organic food consumers (REG eco-con) follow a healthier diet. However, this topic has not been explored in Poland.

View Article and Find Full Text PDF

Unlabelled: Potato peels are one of the most under-utilized wastes which can be highly beneficial to mankind. The red potato peel powder was prepared by using tray drying and vacuum-oven drying method. The proximate analysis of red potato peel powder was conducted followed by its characterization which includes FT-IR, XRD, TGA, DSC, and SEM.

View Article and Find Full Text PDF

The kinetics, oil migration pattern and the role of frying media during immersion frying of '', a dairy dessert, at the microstructural level were studied using confocal laser scanning microscopy (CLSM). After 6 min of frying, the depth of oil migration in increased from 0 to 3.16 mm in clarified butter (locally called '') and 3.

View Article and Find Full Text PDF

The Jerusalem artichoke (JA), a plantrelated to sunflowers and native to North America, has long been valued for its versatility, especially during periods of food scarcity. This resilient crop serves multiple purposes, functioning as a vegetable, medicinal herb, grazing crop, and even a biofuel source. In recent years, interest in JA has grown, largely due to its high nutritional profile and associated health benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!