A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phylomitogenomics elucidates the evolution of symbiosis in Thoracotremata (Decapoda: Cryptochiridae, Pinnotheridae, Varunidae). | LitMetric

Background: Thoracotremata belong to the large group of "true" crabs (infraorder Brachyura), and they exhibit a wide range of physiological and morphological adaptations to living in terrestrial, freshwater and marine habitats. Moreover, the clade comprises various symbiotic taxa (Aphanodactylidae, Cryptochiridae, Pinnotheridae, some Varunidae) that are specialised in living with invertebrate hosts, but the evolutionary history of these symbiotic crabs is still partially unresolved.

Methods: Here we assembled and characterised the complete mitochondrial genomes (hereafter mitogenomes) of three gall crab species (Cryptochiridae): , and . A phylogenetic tree of the Thoracotremata was reconstructed using 13 protein-coding genes and two ribosomal RNA genes retrieved from three new gall crab mitogenomes and a further 72 available thoracotreme mitogenomes. Furthermore, we applied a comparative analysis to characterise mitochondrial gene order arrangement, and performed a selection analysis to test for selective pressure of the protein-coding genes in symbiotic Cryptochiridae, Pinnotheridae, and Varunidae ( and ).

Results: The results of the phylogenetic reconstruction confirm the monophyly of Cryptochiridae, which clustered separately from the Pinnotheridae. The latter clustered at the base of the tree with robust branch values. The symbiotic varunids and clustered together in a clade with free-living Varunidae species, highlighting that symbiosis in the Thoracotremata evolved independently on multiple occasions. Different gene orders were detected in symbionts and free-living species when compared with the ancestral brachyuran gene order. Lastly, the selective pressure analysis detected two positively selected sites in the gene of Cryptochiridae, but the evidence for positive selection in Pinnotheridae and and was weak. Adaptive evolution of mitochondrial protein-coding genes is perhaps related to the presumably higher energetic demands of a symbiotic lifestyle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586294PMC
http://dx.doi.org/10.7717/peerj.16217DOI Listing

Publication Analysis

Top Keywords

cryptochiridae pinnotheridae
12
pinnotheridae varunidae
12
protein-coding genes
12
symbiosis thoracotremata
8
three gall
8
gall crab
8
gene order
8
selective pressure
8
cryptochiridae
6
pinnotheridae
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!