The biomacromolecule silk fibroin (SF) may be constructed to promote biomimetic nucleation and nanostructures of inorganic nanomaterials, offering it a promising candidate for use in various biomimetic applications. We combined SF-NPs and ZIF-8-NPs to fabricate new drug vehicles that effectively release the drug. SF nanoparticles (SF-NPs) were assembled into quercetin (QCT), a myocardial drug added to fabricate QSF-NPs. By acting as a template for the ZIF-8 nucleation onto the surface, the QSF-NPs fabricated core-shell-structured nanocomposites (named QSF@Z-NCs) with ZIF-8 as the core-shell and the QSF-NPs. The biocompatibility analysis using the MTT assay revealed that the developed QCT, SF-NPs, and QSF@Z-NCs are not harmful to cardiac myoblast (H9C2) cells. The in vivo model demonstrated that H9C2 cells encouraged cardiomyocyte fibre regeneration in myocardial infarction rats. We fabricated a brand-new technique using H9C2 cells and QSF@Z-NCs that might encourage the healing processes in myocardial ischemia cells. This study's results demonstrate that it successfully treats myocardial injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587493PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e20746DOI Listing

Publication Analysis

Top Keywords

h9c2 cells
12
silk fibroin
8
myocardial
5
convergent fabrication
4
fabrication silk
4
fibroin nanoparticles
4
nanoparticles quercetin
4
quercetin loaded
4
loaded metal-organic
4
metal-organic frameworks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!