This study presents an approach that utilizes low-value agro-industrial by-products as culture media for producing high-value proteolytic enzymes. The objective was to assess the impact of six agro-industrial by-products as culture media on the production of proteolytic enzymes. Bacillus subtilis strains, confirmed through comprehensive biochemical, morphological, and molecular analyses, were isolated and identified. Enzymatic activity was evaluated using azocasein and casein substrates, and the molecular sizes of the purified extract components were determined. The results demonstrated that the isolated bacteria exhibited higher metabolic and enzymatic activity when cultured in media containing 1 % soybean oil cake or feather meal. Furthermore, higher concentrations of the culture media were found to hinder the production of protease. Optimal protease synthesis on soybean oil cake and feather meal media was achieved after 4 days, using both the azocasein and casein methods. Semi-purification of the enzymatic extract obtained from Bacillus subtilis in feather meal and soybean oil cake resulted in a significant increase in azocaseinolytic and caseinolytic activities. Gel electrophoresis analysis revealed multiple bands in the fractions with the highest enzymatic activity in soybean oil cake, indicating the presence of various enzymes with varying molecular sizes. These findings highlight the potential of utilizing low-value agro-industrial by-products as efficient culture media for the sustainable and economically viable production of proteolytic enzymes with promising applications in various industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585220PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e20735DOI Listing

Publication Analysis

Top Keywords

proteolytic enzymes
16
culture media
16
soybean oil
16
oil cake
16
production proteolytic
12
agro-industrial by-products
12
enzymatic activity
12
feather meal
12
low-value agro-industrial
8
by-products culture
8

Similar Publications

Increasing matrix metalloproteinase-2 activity by treatment of ovine cervical explants with a long-acting analogue of oxytocin (Carbetocin) at the expected time of artificial insemination.

Vet Res Commun

January 2025

Biochemistry, Veterinary Biosciences Department, Veterinary Faculty, Universidad de la República, Ruta 8, Km 18 y Ruta 102, Montevideo, 13000, Uruguay.

The aim was to study the effect of long-acting analogue of oxytocin (Carbetocin) on cervical collagenolysis of MAP-eCG synchronized ewes. At the expected time of artificial insemination, five ewes were slaughtered (n = 5) and their cervical explants (100-200 mg) were incubated during 12 h with MEM supplemented with 0, 8, 16, 32 and 64 ng/mL of Cb. Activities of activated and latent forms of matrix metalloproteinases-2 and - 9 (MMP-2 and MMP-9, respectively) in the supernatant were determined by a SDS-PAGE zymography and prostaglandin E2 concentration by immunoassay.

View Article and Find Full Text PDF

Background: High temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of γ-aminobutyric acid (GABA) in the adaptation of environmental stress.

Methods And Results: This study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.

View Article and Find Full Text PDF

A periplasmic protein modulates the proteolysis of peptidoglycan hydrolases to maintain cell wall homeostasis in .

Proc Natl Acad Sci U S A

January 2025

Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Bacterial cell wall assembly and remodeling require activities of peptidoglycan (PG) hydrolases as well as PG synthases. In particular, the activity of DD-endopeptidases, which cleave the 4-3 peptide crosslinks in PG, is essential for PG expansion in gram-negative bacteria. Maintaining optimal levels of DD-endopeptidases is critical for expanding PG without compromising its integrity.

View Article and Find Full Text PDF

Dengue fever is a serious health issue, particularly in tropical countries like Singapore. We have previously found that dengue virus (DENV) recruits human plasmin in blood meal to enhance the permeability of the mosquito midgut for infection. Here, using biolayer interferometry, we found that neither kringle-4 nor kringle-5 plasmin domains alone binds well to dengue virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!