Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Visual process monitoring would provide more directly appreciable and more easily comprehensible information about the process operating status as well as clear depictions of the occurrence path of faults; however, as a more challenging task, it has been sporadically discussed in the research literature on conventional process monitoring. In this paper, the Data-Dependent Kernel Discriminant Analysis (DK-DA) model is proposed. A special data-dependent kernel function is constructed and learned from the measured data, so that the low-dimensional visualizations are guaranteed, combined with intraclass compactness, interclass separability, local geometry preservation, and global geometry preservation. The new optimization is innovatively designed by exploiting both discriminative information and t-distributed geometric similarities. On the construction of novel indexes for visualization, experiments of visual monitoring tasks on simulated and real-life industrial processes illustrate the merits of the proposed method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586300 | PMC |
http://dx.doi.org/10.1021/acsomega.3c03496 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!