Photocatalysis is realized by the design of a visible-light-active catalyst with robust redox capacity and broad absorption. In this study, a series of novel Z-scheme CoNiWO/Ph-gCN photocatalysts are synthesized to improve their redox property and photocatalytic activity toward broad visible light absorption. An intimate stable heterojunction is made between cobalt-nickel tungstate (CoNiWO) and phenyl-doped graphitic carbon nitride (Ph-gCN), and its physicochemical properties are studied. The bifunctional properties of all of the synthesized materials were assessed by studying the decomposition of bisphenol A (BPA) and methyl orange (MO) dye as model pollutants, followed by an evaluation of their anticancer activity on human lung cancer cell lines. The photocatalyst with 20 wt % CoNiWO heterocomposite showed an enhanced response toward the removal of cancerous cells. The synthesized pristine CoNiWO and Ph-gCN exhibit well-matched band structures and, hence, make it easier to create a Z-scheme heterocomposite. This may increase the lifetime of photoinduced charge carriers with a high redox power, thereby improving their photocatalytic and anticancer activity. An extensive analysis of the mechanism demonstrates that hydroxyl radicals (OH) and superoxide radical anions (O) are responsible for the degradation of organic compounds via Z-scheme charge transfer approach. These findings point toward a new route for creating effective Co-Ni tungstate-based direct Z-scheme photocatalysts for various redox processes, particularly the mineralization of resistant organic molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586185 | PMC |
http://dx.doi.org/10.1021/acsomega.3c04653 | DOI Listing |
Sci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.
View Article and Find Full Text PDFProtein Expr Purif
January 2025
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China. Electronic address:
Ginseng peptides, small molecule active ingredients in ginseng, are mainly extracted naturally or synthesised chemically, but high costs and difficulties hinder further research. In this study, a ginseng hexapeptide FKEHGY, named antitumor peptide 0601 (AT0601) and its five tandem sequence repeats AT0605, were expressed in Bacillus subtilis WB600 for the first time, and the bioactivity study showed that the anticancer activity of AT0605 was even significantly higher than that of AT0601 for colon cancer CT26 cells, with IC50s of 16.82±1.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA. Electronic address:
Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, V-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.
View Article and Find Full Text PDFEur J Med Chem
January 2025
University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy. Electronic address:
The novel diiron amine complexes [FeCp(CO)(NHR')(μ-CO){μ-CN(Me)(Cy)}]CFSO [R' = H, 3; Cy, 4; CHCHNH, 5; CHCHNMe, 6; CHCH(4-CHOMe), 7; CHCH(4-CHOH), 8; Cp = η-CH, Cy = CH = cyclohexyl] were synthesized in 49-92 % yields from [FeCp(CO)(μ-CO){μ-CN(Me)(Cy)}]CFSO, 1a, using a straightforward two-step procedure. They were characterized by IR and multinuclear NMR spectroscopy, and the structure of 7 was confirmed through X-ray diffraction analysis. Complexes 3-8 and the acetonitrile adducts [FeCp(CO)(NCMe)(μ-CO){μ-CN(Me)(R)}]CFSO (R = Cy, 2a; Me, 2b; Xyl = 2,6-CHMe, 2c) were assessed for their water solubility, octanol-water partition coefficient and stability in physiological-like solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!