Coal structure is one of the key geological factors that affects the effect of coal reservoir stimulation. Based on the geological spatial combination characteristics, thickness, and proportion of different coal structures, the coal reservoir is divided into different coal structure combination types. The hydraulic fracturing device is used to carry out indoor fracturing experiments and dissect the crack initiation and expansion characteristics with different coal structure combinations. The results show that the coal structure combination is of the binary type (undeformed coal + granulated coal or cataclastic coal + granulated coal), and the undeformed coal (cataclastic coal) can overcome the tensile strength and minimum principal stress when it is driven by the high-pressure fluid. The undeformed coal (cataclastic coal) ruptures and forms longitudinal cracks. The increasing proportion of granulated coal inhibits crack expansion and promotes the transverse deformation of coal. The interface contact point between the undeformed coal (cataclastic coal) and granulated coal easily fractures along the cross section of the specimen. When the coal structure combination is the triplex type (undeformed coal + granulated coal + cataclastic coal or cataclastic coal + granulated coal + cataclastic coal), the undeformed coal or cataclastic coal is transformed. The forming fractures in the undeformed coal (cataclastic coal) can cut through the soft coal when the thickness of the undeformed coal (cataclastic coal) is large and the thickness of granulated coal is thin. On the contrary, it is not easy to cut through. When the coal structure combination is granulated coal + cataclastic coal + granulated coal, the cataclastic coal fails under shear stress and forms the crack along the cross section of the coal sample. The granulated coal inhibits the crack expansion at both ends. The research results have an important indicative significance for further understanding the fracture initiation and propagation mechanism of hydraulic fracturing with complex coal structures in coal reservoirs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586303PMC
http://dx.doi.org/10.1021/acsomega.3c03999DOI Listing

Publication Analysis

Top Keywords

coal cataclastic
48
cataclastic coal
48
coal
45
granulated coal
40
undeformed coal
32
coal structure
28
coal granulated
24
structure combination
16
hydraulic fracturing
12
cataclastic
12

Similar Publications

Guizhou Province has many multi-layer, thin-thick coal seams; however, complex geology, incomplete reservoir characterization, and sweet-spot selection technology prevent large-scale coalbed methane (CBM) development. This study evaluates the CBM reservoir properties within the Dahebian block using logging data, coal sample analysis, and well-testing data and develops a 3D static reservoir properties model to analyze their spatial and vertical propagation. A sweet spot evaluation model was established using a multi-level fuzzy method based on 9 parameters extracted from a 3D static reservoir properties model.

View Article and Find Full Text PDF

Coal body desorption characteristics are one of the key factors that influence the development of coalbed methane (CBM). In this study, 91 coal core samples from 11 CBM wells in the Fukang mining area were collected from Xinjiang, China, and the coal quality, high-pressure mercury compression, gas content, and natural desorption characteristics measurements were launched. With the detailed analyses of the differences in cumulative desorption volume, desorption ratio, and on-site average desorption rate for the coal samples with different body structures and macrolithotypes, the influence of the maximum reflectance of vitrinite, microscopic coal rock composition, and coal quality and pore characteristics on CBM desorption characteristics were discussed.

View Article and Find Full Text PDF

To clarify the coal structure, spatial distribution, and controlling factors of the 2# coal seam in Jiaozuo mining, the drilling coal samples were collected to observe the coal type and coal structure. The coal macerals were identified by a MPVSP microscope photometer, and the spatial characteristics of the coal structure were obtained through interpreting deep lateral resistivity logging, natural gamma ray logging, density logging, and acoustic logging curves. The influence of coal properties, burial depth, geological stress, and faults on the coal structure were discussed correspondingly.

View Article and Find Full Text PDF

Coal structure is one of the key geological factors that affects the effect of coal reservoir stimulation. Based on the geological spatial combination characteristics, thickness, and proportion of different coal structures, the coal reservoir is divided into different coal structure combination types. The hydraulic fracturing device is used to carry out indoor fracturing experiments and dissect the crack initiation and expansion characteristics with different coal structure combinations.

View Article and Find Full Text PDF

During the production process of coalbed methane, the generation and migration of coal fines can obstruct fractures in coal reservoirs and reduce their permeability. In order to investigate the effects of coal fines migration on the porosity and permeability of coal reservoirs, we conducted core water flooding experiments, low-field nuclear magnetic resonance (NMR), and low-temperature N adsorption experiments to study the variations in porosity and permeability of cataclastic coal during coal fines migration and the impact of coal fines migration on porosity and permeability. The experimental results reveal that the initial porosity ratio of cataclastic coal exhibits the characteristics of micropore > macropore > transitional pore > mesopore, with the pore types being predominantly fissured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!