Background: Prior literature links passively sensed information about a person's location, movement, and communication with social anxiety. These findings hold promise for identifying novel treatment targets, informing clinical care, and personalizing digital mental health interventions. However, social anxiety symptoms are heterogeneous; to identify more precise targets and tailor treatments, there is a need for personal sensing studies aimed at understanding differential predictors of the distinct subdomains of social anxiety. Our objective was to conduct a large-scale smartphone-based sensing study of fear, avoidance, and physiological symptoms in the context of trait social anxiety over time.
Methods: Participants ( = 1013; 74.6 % female; age = 40.9) downloaded the LifeSense app, which collected continuous passive data (e.g., GPS, communication, app and device use) over 16 weeks. We tested a series of multilevel linear regression models to understand within- and between-person associations of 2-week windows of passively sensed smartphone data with fear, avoidance, and physiological distress on the self-reported Social Phobia Inventory (SPIN). A shifting sensor lag was applied to examine how smartphone features related to SPIN subdomains 2 weeks in the future (distal prediction), 1 week in the future (medial prediction), and 0 weeks in the future (proximal prediction).
Results: A decrease in time visiting novel places was a strong between-person predictor of social avoidance over time (distal = -0.886, = .002; medial = -0.647, = .029; proximal = -0.818, = .007). Reductions in call- and text-based communications were associated with social avoidance at both the between- (distal = -0.882, = .002; medial = -0.932, = .001; proximal = -0.918, = .001) and within- (distal = -0.191, = .046; medial = -0.213, = .028) person levels, as well as between-person fear of social situations (distal = -0.860, < .001; medial = -0.892, < .001; proximal = -0.886, < .001) over time. There were fewer significant associations of sensed data with physiological distress. Across the three subscales, smartphone data explained 9-12 % of the variance in social anxiety.
Conclusion: Findings have implications for understanding how social anxiety manifests in daily life, and for personalizing treatments. For example, a signal that someone is likely to begin avoiding social situations may suggest a need for alternative types of exposure-based interventions compared to a signal that someone is likely to begin experiencing increased physiological distress. Our results suggest that as a prophylactic means of targeting social avoidance, it may be helpful to deploy interventions involving social exposures in response to decreases in time spent visiting novel places.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589746 | PMC |
http://dx.doi.org/10.1016/j.invent.2023.100683 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!