Water pollutants such as oil spills, industrial dyes, and microplastics threaten public health and aquatic ecosystems. There are considerable challenges in removing water contaminants using traditional methods. Several studies have been conducted in recent years to develop effective water purification materials. Despite this, the mass production of most materials is extremely challenging because they involve multiple intricate steps and sophisticated equipment. Herein, we report the facile synthesis of spent coffee ground (SCG)-derived magnetic microrobots, which we dub "CoffeeBots", to remove oil, organic dyes, and microplastic pollution from contaminated seawater. In order to meet eco-friendly, high-yield and low-cost requirements, iron oxide nanoparticles (IONPs) were deposited on biodegradable SCGs using green chemistry. The IONPs on CoffeeBots facilitate magnetic navigation and recycling, microswarm assembly, and ease of retrieval after water remediation tasks. CoffeeBots' intrinsic surface hydrophobicity enables efficient on-the-fly capture and removal of oil droplets and microplastics from contaminated water with remote magnetic guidance. CoffeeBots were also functionalized with ascorbic acid (AA@CoffeeBots) to remove methylene blue (MB) dye contaminants from polluted seawater. SCGs and AA act as bioadsorbent and reducing agent, respectively, for MB dye removal whereas magnetic propulsion enhances mixing and accelerates MB decolorization. These CoffeeBots can be recycled numerous times for removing oil spills, organic dyes, and microplastics from the seawater. CoffeeBots hold considerable potential as sustainable, recyclable, and low-cost remediation agents for water treatment in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr03592a | DOI Listing |
Heliyon
January 2025
Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
The applicability of cellulose and its derivatives is greatly depends on their attributes such as aspect ratio, morphology, surface chemistry, crystallinity, as well as their thermal and mechanical properties. However, these attributes can alter according to the utilized raw material, size classifications, extraction techniques, or fibrillation methods. Among these, the effect of raw material particle size on cellulose properties has received limited attention in scientific studies.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Analytical Chemistry Group, Science Department, Public University of Navarre, 31006 Pamplona, Spain.
Cocoa and coffee are two of the world's most important crops. Therefore, their by-products are generated in large quantities. This work proposes a simple method for the valorization of these residues by obtaining phenolic compounds and melanoidins by solid-liquid extraction using different hydroalcoholic solutions as extracting solvents (0, 25, 50, 75, 100% ethanol).
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea. Electronic address:
Spent coffee grounds (SCGs) have been explored for use as various bioresources, such as biofuels, and are known to possess biological functions, including antioxidant activity. However, the antibiofilm properties of SCGs against pathogenic bacteria have not been fully investigated. Therefore, this study aimed to highlight the inhibitory effects of SCG extract (SCGE) on biofilm formation in Listeria monocytogenes and investigated the underlying mechanisms.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Institute of Chemical Technology, Matunga, Mumbai, India.
This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy.
Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!