The treatment and beneficial use of polluted or contaminated environmental matrices have become major issues, especially as the world strives toward a zero-waste policy. In this regard, dredged sediments need to be treated before they can be used in an environmentally safe and sustainable manner. Therefore, this work aims to treat estuarine sediments and, more importantly, use physicochemical, mineral, organic, and chemical information to understand the reactions that occur upon treatment. Dredged estuarine sediments were collected from Tancarville (Seine River estuary, France) and subjected to electrokinetic (EK) remediation using a 128-L laboratory-scale reactor. The sediments were treated 8 h per day for 21 days. The electric (voltage and current) and physicochemical (pH and electric conductivity) parameters were monitored during treatment. Sediments were collected from various sections in the reactor at the end of the experiment (lengthwise, widthwise, and depthwise). The spatial variation was investigated in terms of organic, mineral, and metal contents. Statistical analyses proved that the variation occurred only in the lengthwise direction. Furthermore, three main phases described the treatment, which were mainly linked to carbonate dissolution and pH variation. The results also showed that the trace elements Ni and Zn were reduced by 21% and 19%, respectively, without a direct link to pH, while Ca and Mg were only redistributed. The buffering capacity of the anodic sediment was reduced due to carbonate dissolution. The treated sediments showed reduced contents in trace metals without affecting major elements that can be useful in agriculture (i.e., Ca and Mg).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30271-8 | DOI Listing |
Environ Res
January 2025
College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
Estuarine ecosystems have been threatened by increasing anthropogenic and natural pressures, yet the integral understanding of their stability characteristics of microbial communities at taxonomic, habitat, and spatial scales remains limited. In this study, the Mulan River estuary in southeastern China was selected to compare the stability characteristics of bacterial and protistan communities in water and sediments over three hydrological periods, and to explore their spatial variations along the estuarine continuum from river to ocean. The potential driving mechanisms of stability characteristics were also explored.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergence Coastal Research, Seoul National University, Siheung-si, Gyeonggi-do 15011, Republic of Korea. Electronic address:
The ecosystem regulating services from tidal flats, such as removal of organic pollutants, provided by natural tidal flats are being increasingly recognized, yet quantitative evaluation remains limited. Here we evaluated a nationwide capacity of natural purification in tidal flats. Using in situ sediments from five along the Korean coast (Incheon, Gunsan, Sinan, Gwangyang, and Busan), we applied a mesocosm system informed by 18 years of riverine monitoring data from national surveys.
View Article and Find Full Text PDFChemosphere
January 2025
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany; Christian-Albrechts University Kiel, Institute of Geosciences, Ludewig-Meyn-Str, 24118, Kiel, Germany.
Relic munitions from warfare and intentional dumping contaminate coastal waters worldwide, with an estimated 300,000 tons in the German Baltic Sea alone. These contain toxic conventional explosive chemicals, including 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and 1,3-dinitrobenzene (DNB). Corrosion of metal munition housings in seawater releases these munition chemicals (MCs) to the marine environment.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous chemicals that pose potentially serious threats to both human health and the integrity of the ecosystem. This review compiles current knowledge on PFAS contamination in estuaries, focusing on sources, abundance, distribution, fate, and toxic mechanisms. It also addresses the health risks associated with these compounds and identifies research gaps, offering recommendations for future studies.
View Article and Find Full Text PDFEcol Appl
January 2025
Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands.
Tidal marshes can contribute to nature-based shoreline protection by reducing the wave load onto the shore and reducing the erosion of the sediment bed. To implement such nature-based shoreline erosion protection requires the ability to quickly restore or create highly stable and erosion-resistant tidal marshes at places where they currently do not yet occur. Therefore, we aim to identify the drivers controlling the rate by which sediment stability builds up in young pioneer marshes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!