A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microarray meta-analysis reveals comprehensive effects of 3,4,5-tricaffeolyquinic acid in cell differentiation and signaling. | LitMetric

Microarray meta-analysis reveals comprehensive effects of 3,4,5-tricaffeolyquinic acid in cell differentiation and signaling.

Eur J Pharmacol

Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan; Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan. Electronic address:

Published: December 2023

Caffeoylquinic acids (CQA) are polyphenolic compounds found in fruits, vegetables, coffee, and spices that have exhibited several beneficial activities, including antioxidant, antibacterial, neuroprotective, anti-inflammatory, anticancer, antiviral, antidiabetic, and cardiovascular effects. A derivative, TCQA (3,4,5-Tri-O-caffeoylquinic acid), has also shown both neurogenic and pigment differentiation potential. A transcriptomic-based meta-analysis was conducted to explore potential biochemical processes and molecular targets of TCQA. This approach involved integrating data from various cell and tissue types, including human amniotic stem cells, human neural stem cells, human dermal papilla cells, and the brain cortex of aging model mice. It offered a comprehensive perspective on the significant gene regulations in response to TCQA treatment. The objective was to uncover the mechanism and novel targets of TCQA, facilitating a further understanding of its functions. New areas of interest found were TCQA's effect on adipogenesis, heart, and muscle tissue development. In addition, significantly enhanced biological activities found through meta-analysis included cell cycle, VEGFA-VEGFR2 pathway, and BMP signaling. Overall, a comprehensive functional and visual analysis using available biological databases uncovered the multi-target potential of this natural compound.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2023.176143DOI Listing

Publication Analysis

Top Keywords

targets tcqa
8
stem cells
8
cells human
8
microarray meta-analysis
4
meta-analysis reveals
4
reveals comprehensive
4
comprehensive effects
4
effects 345-tricaffeolyquinic
4
345-tricaffeolyquinic acid
4
acid cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!