Compound 5 was identified from a high-throughput screening campaign as a small molecule pharmacological chaperone of glucocerebrocidase (GCase), a lysosomal hydrolase encoded by the GBA1 gene, variants of which are associated with Gaucher disease and Parkinson's disease. Further investigations revealed that compound 5 was slowly transformed into a regio-isomeric compound (6) in PBS buffer, plausibly via a ring-opening at hemiaminal moiety accompanied by subsequent intramolecular CC bond formation. Utilising this unexpected skeletal rearrangement reaction, a series of compound 6 analogues was synthesized which yielded multiple potent GCase pharmacological chaperones with sub-micromolar EC values as exemplified by compound 38 (EC = 0.14 μM).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2023.129531DOI Listing

Publication Analysis

Top Keywords

unexpected skeletal
8
skeletal rearrangement
8
rearrangement reaction
8
compound
5
identification novel
4
novel glucocerebrosidase
4
glucocerebrosidase chaperones
4
chaperones unexpected
4
reaction compound
4
compound identified
4

Similar Publications

The single-atom skeletal editing technology is an efficient method for constructing molecular skeletons, which has broad coverage in synthetic chemistry. However, its potential in the preparation of energetic heterocyclic molecules is grossly underexplored. In this work, an unexpected one-step reaction for the synthesis of novel energetic molecules was discovered which combines single-atom skeletal editing, -dinitromethyl functionalization, and zwitterionization in one step.

View Article and Find Full Text PDF
Article Synopsis
  • Estimating human chronological age is crucial in forensic science, and this study compares skeletal maturation and dental mineralization methods for accuracy in Egyptian children and adolescents.
  • The research included 176 participants aged 8-16, analyzing radiographs with the Fishman and Nolla methods, revealing that both are valid age predictors but Nolla outperformed Fishman.
  • Nolla slightly underestimated age while Fishman overestimated it, and the study recommends using only the Nolla method for age estimation, as it provides the most reliable results without needing additional radiographic assessments.
View Article and Find Full Text PDF

Reframing Formalin: A Molecular Opportunity Enabling Historical Epigenomics and Retrospective Gene Expression Studies.

Mol Ecol Resour

January 2025

National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, Australian Capital Territory, Australia.

Formalin preservation of museum specimens has long been considered a barrier to molecular research due to extensive crosslinking and chemical modification. However, recent optimisation of hot alkaline lysis and proteinase K digestion DNA extraction methods have enabled a growing number of studies to overcome these challenges and conduct genome-wide re-sequencing and targeted locus-specific sequencing. The newest, and perhaps most unexpected utility of formalin preservation in archival samples is its ability to preserve in situ DNA-protein interactions at a molecular level.

View Article and Find Full Text PDF

Live Visualization of Calcified Bones in Zebrafish and Medaka Larvae and Juveniles Using Calcein and Alizarin Red S.

Bio Protoc

December 2024

Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan.

Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results.

View Article and Find Full Text PDF

The ancient cemetery of Pommerœul, Belgium, was classified as Gallo-Roman in the 1970s', yielding 76 cremation graves and one inhumation. However, subsequent radiocarbon analyses dated the inhumation to the Late Neolithic (4-3 millennium calBC). We report osteoarchaeological analysis indicating that the inhumation was composed of bones from multiple individuals, afterwards buried as "one".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!