Rapid growth in industrialization sectors, the wastewater treatment plants become exhausted and potentially not able to give desirable discharge standards. Many industries discharge the untreated effluent into the water bodies which affects the aquatic diversity and human health. The effective disposal of industrial effluents thus has been an imperative requirement. For decades nanocellulose based materials gained immense attraction towards application in wastewater remediation and emerged out as a new biobased nanomaterial. It is light weighted, cost effective, mechanically strong and easily available. Large surface area, versatile surface functionality, biodegradability, high aspect ratio etc., make them suitable candidate in this field. Majorly cellulose based nanomaterials are used in the form of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). This review specifically describes about a variety of extraction methods to produced nanocellulose and also discusses the modification of nanocellulose by adding functionalities in its surface chemistry. We majorly focus on the utilization of nanocellulose based materials in water remediation for the removal of different contaminants such as dyes, heavy metals, oil, microbial colony etc. This review mainly emphasizes in ray of hope towards nanocellulose materials to achieve more advancement in the water remediation fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127465DOI Listing

Publication Analysis

Top Keywords

water remediation
12
nanocellulose based
8
based materials
8
nanocellulose
7
nanocellulose comprehensive
4
comprehensive review
4
review investigating
4
investigating potential
4
potential innovative
4
innovative material
4

Similar Publications

This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.

View Article and Find Full Text PDF

Growth of microbes in competitive lifestyles promotes increased ARGs in soil microbiota: insights based on genetic traits.

Microbiome

January 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.

View Article and Find Full Text PDF

On October 11, 2018, in the Ulytau region of the Republic of Kazakhstan, the Soyuz-FG launch vehicle carrying a crewed MS-10 spacecraft failed. It resulted in the release into the fragile arid ecosystems of rocket propellants, i.e.

View Article and Find Full Text PDF

Enhanced photocatalytic dye detoxification by banana peel derived enzyme inherited ZnO/g-CN nanocomposite: Validation by soil health and seed germination analyses.

Int J Biol Macromol

January 2025

PG & Research Department of Physics, AVVM Sri Pushpam College (Autonomous), [Affiliated to Bharathidasan University, Tiruchirappalli], Poondi, Thanjavur 613503, Tamil Nadu, India. Electronic address:

Development of bio-supported photocatalysts has become a pressing need in the field of environmental remediation. This work reports the synthesis of bio-enzyme (from banana peels) inherited (ZnO/g-CN) nanocomposite by simple soft chemical method and its photocatalytic degradation ability against the mixed dye (Methylene blue (MB) + Rhodamine-B (RhB)) under UV irradiation. Synthesized nanoparticles were characterized using experimental techniques XRD, FESEM, TEM, EDAX, XPS, UV-vis-NIR spectroscopy and FTIR.

View Article and Find Full Text PDF

Efficacy and durability of cobalt sulfide nanoparticles and axial sulfur-coordinated cobalt single-atom composite sites in hydrogenative nitroaromatics decontamination.

J Colloid Interface Sci

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!