To investigate the digestive behavior of extruded starch-polyphenols system, extruded sweet potato starch vermicelli (ESPSV) was used as a model. The multi-scale structure, starch digestibility, polyphenol release, digestive enzyme activity during digestion and their correlation of ESPSV supplemented with matcha (MT), green tea extract (GTE), tea polyphenols (TP) and epigallocatechin gallate (EGCG) (at 1% polyphenol level) were discussed. Results showed that tea products in whatever form could retard starch digestion, with EGCG working best. The predicted glycemic index (pGI) of ESPSV was decreased from 82.50 to 65.46 after adding EGCG. Starch formed larger molecular aggregates with tea products under extrusion, showing a "B + V" type pattern. The order of V-type crystals content was EGCG + ESPSV (1.41) > TP + ESPSV (1.50) > GTE + ESPSV (1.88) > MT + ESPSV (2.62) > ESPSV (3.20). Under external pressure, EGCG, as tea monomer, was more likely to enter the spiral cavity of amylose and form V-type inclusion complex. Notably, polyphenols released during digestion could still reduce digestive enzyme activity, with a 15.53% decrease in EGCG + ESPSV compared to ESPSV. This was verified by correlation analysis, where RDS content (0.961, p < 0.01) and pGI (0.966, p < 0.01) were highly significantly correlated with the enzyme activity. Furthermore, tea products did not break or even enhance the quality of ESPSV as the final product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!