Insights from insulin resistance pathways: Therapeutic approaches against Alzheimer associated diabetes mellitus.

J Diabetes Complications

School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Medical Advancement for Better Quality of Life Impact Lab, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia. Electronic address:

Published: November 2023

Alzheimer Associated Diabetes Mellitus, commonly known as Type 3 Diabetes Mellitus (T3DM) is a distinct subtype of diabetes with a pronounced association with Alzheimer's disease (AD). Insulin resistance serves as a pivotal link between these two conditions, leading to diminished insulin sensitivity, hyperglycemia, and impaired glucose uptake. The brain, a vital organ in AD context, is also significantly impacted by insulin resistance, resulting in energy deficits and neuronal damage, which are hallmark features of the neurodegenerative disorder. To pave the way for potential therapeutic interventions targeting the insulin resistance pathway, it is crucial to comprehend the intricate pathophysiology of T3DM and identify the overlapped features between diabetes and AD. This comprehensive review article aims to explore various pathway such as AMPK, PPARγ, cAMP and P13K/Akt pathway as potential target for management of T3DM. Through the analysis of these complex mechanisms, our goal is to reveal their interdependencies and support the discovery of innovative therapeutic strategies. The review extensively discusses several promising pharmaceutical candidates that have demonstrated dual drug action mechanisms, addressing both peripheral and cerebral insulin resistance observed in T3DM. These candidates hold significant promise for restoring insulin function and mitigating the detrimental effects of insulin resistance on the brain. The exploration of these therapeutic options contributes to the development of innovative interventions that alleviate the burden of T3DM and enhance patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdiacomp.2023.108629DOI Listing

Publication Analysis

Top Keywords

insulin resistance
24
diabetes mellitus
12
alzheimer associated
8
associated diabetes
8
insulin
7
resistance
6
diabetes
5
t3dm
5
insights insulin
4
resistance pathways
4

Similar Publications

Background: The association between serum uric acid (SUA) and dyslipidaemia is still unclear in patients with type 2 diabetes mellitus (T2DM). This study aimed to examine the association between SUA and dyslipidaemia and to explore whether there is an optimal SUA level corresponding to the lower risk of suffering from dyslipidaemia.

Research Design And Methods: This cross-sectional study included 1036 inpatients with T2DM and the clinical data were extracted from the hospital medical records.

View Article and Find Full Text PDF

The growing range of complications of diabetes mellitus.

Trends Endocrinol Metab

January 2025

School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.

With the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity, several previously under-recognised complications associated with T2DM are becoming more evident. The most common of these emerging complications are metabolic dysfunction-associated steatotic liver disease (MASLD), cancer, dementia, sarcopenia, and frailty, as well as other conditions involving the lung, heart, and intestinal tract. Likely causative factors are chronic inflammation and insulin resistance, whereas blood glucose levels appear to play a lesser role.

View Article and Find Full Text PDF

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

Statins and non-alcoholic fatty liver disease: A concise review.

Biomed Pharmacother

January 2025

Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.

Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging.

View Article and Find Full Text PDF

Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors.

Neurosci Bull

January 2025

Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.

Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!