A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide. | LitMetric

A novel "off-on" ratiometric fluorescent aptasensor for adenosine detection based on FRET between quantum dots and graphene oxide.

Spectrochim Acta A Mol Biomol Spectrosc

Xingzhi College, Zhejiang Normal University, Lanxi 321100, China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China. Electronic address:

Published: January 2024

A novel "off-on" ratiometric fluorescent aptasensor was established for adenosine detection based on fluorescence resonance energy transfer (FRET) between CdS QDs, DNA QDs as donor and graphene oxide (GO) as acceptor. Amino-riched DNA QDs covalently bonded to the carboxyl group on the edge of the GO, and with the absorption of the TGA-modified CdS QDs with aptamer (CdS QDs-apt) onto the GO surface via the π-π stacking interaction. The fluorescence of both CdS QDs and DNA QDs were efficiently quenched due to FRET (turn off). When adenosine was present, the specific binding of the aptamer to the target preferentially that released the CdS QDs-apt from GO. The process would inhibit the FRET which contribute to the fluorescence of CdS QDs-apt recovery again (turn on), while the fluorescence intensity of DNA QDs only slightly altered and acted as the reference signal. Thus, a novel "off-on" ratiometric fluorescent aptasensor for adenosine detection was constructed accordingly. There was a good linearity relationship between the ratio of the FL intensity (F nm/F nm) and the concentration of adenosine in the range of 20.00-180.0 nmol/L with a detection limit of 1.3 nmol/L (S/N = 3, n = 9). Importantly, the feasibility of the developed aptasensor for selective detection of adenosine in serum and urine samples with satisfactory results. The recoveries were observed to be 97.04-100.2 %.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.123557DOI Listing

Publication Analysis

Top Keywords

dna qds
16
novel "off-on"
12
"off-on" ratiometric
12
ratiometric fluorescent
12
fluorescent aptasensor
12
adenosine detection
12
cds qds
12
cds qds-apt
12
aptasensor adenosine
8
detection based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!