In rivers, riverbeds are considered to have dual properties as a short-term sink and a source of further mobilization for microplastics. To better understand the sources, storage, and fate of microplastics in river systems, this study quantified the formation of microplastic hotspots in riverbeds and seasonal variations in microplastic inventories in riverbeds, especially for small-sized microplastics (<330 µm), with a fluorescence-based protocol. This study provides first-hand measured evidence for the sequestration of microplastics in the riverbed under low-flow conditions and its export from the riverbed under high-flow conditions. The results show that riverbeds in urban areas are still hotspots for microplastic pollution and that high inputs of urban microplastics control microplastic load in its downstream areas. Seasonal rainfall exported 34.86 % (equivalent to 4.34 × 10 items/8.57 t) of microplastic pollution from the riverbed, and its removal capacity may be related to the rainfall intensity. Wider riverbeds are conducive to the formation of microplastic hotspots due to the flow slow down. Most importantly, rainfall-driven scouring of the riverbed can enhance the pollution of small-sized microplastics in the riverbed, especially the smallest-size microplastics (<100 µm). Therefore, this study not only contributes reliable information about the sequestration and export of microplastics in the riverbed, but also provides a possible mechanism to explain the lack of small-sized microplastics (<330 µm) in the ocean.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2023.108265 | DOI Listing |
Sci Total Environ
January 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:
The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus.
View Article and Find Full Text PDFPharmacol Res
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China. Electronic address:
The subcellular localization of Yes-associated protein (YAP) is dynamically regulated by post-transcriptional modifications, critically influencing cardiac function. Despite its significance, the precise mechanism controlling YAP nuclear sequestration and its role in cardiac hypertrophy remain poorly defined. In this study, utilizing immunoprecipitation-mass spectrometry, we identified potential acetylation sites and interacting proteins of YAP.
View Article and Find Full Text PDFSci Rep
December 2024
School of Environmental Science, The University of Shiga Prefecture, Hassakacho, Hikone, 2500, 522-8533, Japan.
Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.
View Article and Find Full Text PDFNPJ Ocean Sustain
May 2024
Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
Achieving net-zero emissions by 2050 requires the development of effective negative emission techniques, including ocean-based approaches for CO sequestration. However, the implementation and testing of marine CO removal (mCDR) techniques such as ocean iron fertilization (OIF) or ocean alkalinity enhancement (OAE) face significant challenges. Herein, a novel self-operating electrochemical technology is presented that not only combines OIF and OAE, but also recovers hydrogen gas (H) from seawater, hence offering a promising solution for achieving quantifiable and transparent large-scale mCDR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!