Cholinesterase inhibitors are a group of medicines that are widely used for the treatment of cognitive impairments accompanying Alzheimer's disease as well as for the treatment of pathological muscle weaknesses syndromes such as myasthenia gravis. The search for novel non-toxic and effective cholinesterase inhibitors for creating neuroprotective and neurotransmitter agents is an urgent interdisciplinary problem. For the first time, the application of water-soluble pillar[5]arenes containing amino acid residues as effective cholinesterase inhibitors was shown. The influence of the nature of aliphatic and aromatic alpha-amino acid residues (glycine, l-alanine, l-phenylalanine and l-tryptophan) on self-assembly, aggregate's stability, cytotoxicity on A549 and LEK cells and cholinesterase inhibition was studied. It was found that the studied compounds with aliphatic amino acid residues showed a low inhibitory ability against cholinesterases. It was established that the pillar[5]arene containing fragments of l-phenylalanine is the most promising inhibitor of butyrylcholinesterase (IC = 0.32 ± 0.01 μM), the pillar[5]arene with l-tryptophan residues is the most promising inhibitor of acetylcholinesterase (IC = 0.32 ± 0.01 μM). This study has shown a possible application of peptidomimetics based on pillar[5]arenes to inhibit cholinesterase, as well as control the binding affinity to a particular enzyme in a structure-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2023.106927 | DOI Listing |
Biodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Türkiye.
The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
Spodoptera litura (Fabricius) is a major polyphagous pest of global relevance due to the damage it causes to various crops. Chlorpyrifos (CPF) is generally used by farmers to manage S. litura, however, its widespread use has resulted in the development of insecticide resistance.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye. Electronic address:
Bacillus cereus sphingomyelinase C (B. cereus SMase), which plays a crucial role in bacterial virulence, has emerged as a new therapeutic target for treating opportunistic infections caused by this pathogen. It also shares catalytic domain similarity with human neutral sphingomyelinase 2 (nSMase2), which is implicated in Alzheimer's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!