AI Article Synopsis

  • Desertification and microplastic pollution are significant environmental challenges that affect ecosystems and human health in dry areas, particularly in Central Asia's Amu Darya-Aral Sea basin.
  • A study found microplastics in soil samples across a 1000 km area, with quantities ranging from 182 to 17,841 items per kg, and certain polymers like polyurethane and silicone resin being most prevalent.
  • Microplastics were more abundant in deeper soils (20-50 cm) compared to surface layers, suggesting that desertification and human activities such as grazing are key contributors to the increase and distribution of microplastics in these drylands.

Article Abstract

Desertification and microplastic pollution are major environmental issues that impact the function of the ecosystem and human well-being of drylands. Land desertification may influence soil microplastics' abundance, transport, and distribution, but their distribution in the dryland deserts of Central Asia's Amu Darya-Aral Sea basin is unknown. Here, we investigated the abundance and distribution of microplastics in dryland desert soils from the Amu Darya River to the Aral Sea basin in Central Asia at a spatial scale of 1000 km and soil depths ranging from 0 to 50 cm. Microplastics were found in soils from all sample locations, with abundances ranging from 182 to 17841 items kg and a median of 3369. Twenty-four polymers were identified, with polyurethane (PU, 37.3%), silicone resin (SR, 17.0%), and chlorinated polyethylene (CPE, 9.8%) accounting for 64.1% of all polymer types. The abundance of microplastics was significantly higher in deep (20-50 cm) soils than in surface (0-5, 5-20 cm) soils. The main morphological characteristics of the observed microplastics were small size (20-50 μm) and irregular particles with no round edges (mean eccentricity 0.65). The abundance was significantly and positively related to soil EC and TP. According to the findings, desertification processes increase the abundance of microplastic particles in soils and promote migration to deeper soil layers. Human activities, mainly grazing, may be the region's primary cause of desertification and microplastic pollution. Our findings provide new information on the diffusion of microplastics in drylands during desertification; these findings are critical for understanding and promoting dryland plastic pollution prevention and control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119353DOI Listing

Publication Analysis

Top Keywords

sea basin
12
amu darya-aral
8
darya-aral sea
8
basin central
8
central asia
8
desertification microplastic
8
microplastic pollution
8
desertification
6
abundance
6
microplastics
6

Similar Publications

High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution.

View Article and Find Full Text PDF

The Beijing-Tianjin-Hebei (Jing-Jin-Ji) Region is home to the most acute economic, resource, and environmental conflicts in the Bohai Sea region, and the rivers entering the sea carry abundant total nitrogen (TN) input into the Bohai Bay, which is the main land-based input causing eutrophication of the bay. The Haihe River Basin in the Jing-Jin-Ji Region was divided into 112 (2018-2019) and 187 (2020-2022) control units, and the spatial and temporal variations in TN concentration in the surface water of the Haihe River Basin in the Jing-Jin-Ji Region were systematically analyzed from 2018 to 2022 by combining the Euclidean distance analysis method and the K-means clustering analysis method. The results showed that the annual average concentration of TN in the region showed a trend of decreasing (2018-2020) and then increasing (2021-2022), in which the concentration of TN increased significantly from June 2021 to June 2022.

View Article and Find Full Text PDF

An integrated multi-source dataset of elasmobranchs in the Red Sea following the Red Sea Decade Expedition.

Sci Data

December 2024

Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Red Sea elasmobranch populations are facing alarming declines. Effective conservation efforts require management strategies informed by extensive datasets and by developing an understanding of distribution patterns within the basin, which is currently lacking. This study introduces CERSE (Central and Eastern Red Sea Elasmobranchs), a comprehensive compilation of elasmobranch observations in the central and eastern Red Sea basin following the route of the Red Sea Decade Expedition.

View Article and Find Full Text PDF

Confined by the Mid-Atlantic Ridge and the European continental shelf, the deep-sea acorn barnacle (Hoek, 1883) lives in the northeast Atlantic deep sea, where it has been frequently reported in high current areas. Cemented to a solid substrate during its entire adult life, the species can only disperse by means of planktotrophic nauplius larvae. This study reports on the occurrence, ecology and genetic connectivity of from four sites within the northeastern Iceland Basin and presents the first record of the species living affiliated with hydrothermal vent field on the Reykjanes Ridge axis.

View Article and Find Full Text PDF

Background: Higher life expectancy has produced a higher older people porpulation, not necessarily with a consistent quality of life, showing a high rate of vulnerability and dependence. The current social and health crisis situation has highlighted the need to create new integrated models of care that could be translated into social and health policies.

Objective: The present study aims to develop, test, and validate an innovative integrated care model for older people with dependence and at risk of social exclusion and their caregivers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!