Objective: Luminal-B type human breast cancer cell line (BT-474) to assess the synergistic effects of ozone applied after chemotherapeutic treatment with various dosages of doxorubicin, and compare the results with the effects on L929 fibroblast cell line.
Methods: Doxorubicin (1-50 M) was added to each cell lines and left to sit for 24 h at 37 °C. Then, as combination groups, half of the groups were incubated with 30 g/mL ozone for 25 min. Tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), and matrix metalloproteinase-2 and - 9 (MMP-2 and MMP-9) levels were measured using the MTT test, flow cytometry, and immunocytochemistry, respectively.
Results: When compared to simply doxorubicin-applied cells without ozone treatment, each dose of doxorubicin + ozone treatment considerably boosted L929 viability but significantly decreased BT-474 viability. Additionally, the combination increased the apoptotic impact of doxorubicin on BT-474 but not L929 (P < 0.001). TGF-, MMP-2, and MMP-9 levels of L929 after combination were substantially higher than those of the other groups (P < 0.01). Doxorubicin's effect on BT-474's protein levels, which had significantly decreased in comparison to those of the other groups, was reversed by the combination treatment (P < 0.05).
Conclusion: Doxorubicin's anti-proliferative and apoptotic effects were enhanced by ozone treatment in BT-474 cells, but it also repaired and healed healthy fibroblast cells that had been harmed by the cytotoxicity of the chemotherapy drug. If doxorubicin and ozone treatment are coupled, BT-474 cells may develop resistance to it through expressions of TNF-α, TGF-β, MMP-2, and MMP-9.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tice.2023.102233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!