Decoding the interaction mechanism between bis(2-methyl-3-furyl) disulfide and oral mucin.

Food Chem

Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China. Electronic address:

Published: March 2024

AI Article Synopsis

Article Abstract

The interactions between mucin and aroma compounds have been shown to affect aroma perception. This study aimed to investigate the binding behavior between mucin and bis(2-methyl-3-furyl) disulfide and reveal the interaction mechanism at different pH levels. Based on our results, the binding percentages between mucin and bis(2-methyl-3-furyl) disulfide ranged from 37.03 % to 71.87 % at different contents. The complexes formation between mucin and bis(2-methyl-3-furyl) disulfide was confirmed by turbidity, particle size, zeta-potential, and surface hydrophobicity analyses. According to the results of multispectral techniques and molecular dynamic simulation, mucin could interact with bis(2-methyl-3-furyl) disulfide by hydrogen bonding, hydrophobic interactions, and van der Waals force. Furthermore, the binding constants of mucin to bis(2-methyl-3-furyl) disulfide were 1.26 × 10, 1.14 × 10, and 9.13 × 10 L mol at pH 5.0, 7.0, and 8.5, respectively. These findings contribute to the comprehensive knowledge on the interaction mechanism between bis(2-methyl-3-furyl) disulfide and mucin, providing insights for flavor modulation in meat products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.137762DOI Listing

Publication Analysis

Top Keywords

bis2-methyl-3-furyl disulfide
28
mucin bis2-methyl-3-furyl
16
interaction mechanism
12
mechanism bis2-methyl-3-furyl
8
mucin
8
bis2-methyl-3-furyl
7
disulfide
7
decoding interaction
4
disulfide oral
4
oral mucin
4

Similar Publications

Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.

View Article and Find Full Text PDF

Molybdate uptake interplay with ROS tolerance modulates bacterial pathogenesis.

Sci Adv

January 2025

Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.

The rare metal element molybdenum functions as a cofactor in molybdoenzymes that are essential to life in almost all living things. Molybdate can be captured by the periplasmic substrate-binding protein ModA of ModABC transport system in bacteria. We demonstrate that ModA plays crucial roles in growth, multiple metabolic pathways, and ROS tolerance in .

View Article and Find Full Text PDF

Engineering dimer mutants of human geranylgeranyl pyrophosphate synthase.

PLoS One

January 2025

Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.

Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.

View Article and Find Full Text PDF

Tungsten disulphide nanosheet modulated fluorescent gold nanocluster immunoprobe for the detection of tau peptide: Alzheimer's disease biomarker.

Anal Methods

January 2025

Department of Chemistry, School of Physical and Mathematical Science, Research Centre, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.

The neuronal tau peptide serves as a key biomarker for neurodegenerative diseases, specifically, Alzheimer's disease, a condition that currently has no cure or definitive diagnosis. The methodology to noninvasively detect tau levels from body fluids remains a major hurdle for a rapid and simple diagnostic approach. Thus, developing new detection methods for sensing tau protein levels is crucial.

View Article and Find Full Text PDF

Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.

ACS Med Chem Lett

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!