Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bronchial asthma is a prevalent non-communicable disease among children. The study collected clinical data from 390 children aged 4-17 years with asthma, with or without rhinitis, who received allergen immunotherapy (AIT). Combining these data, this paper proposed a predictive framework for the efficacy of mite subcutaneous immunotherapy in asthma based on machine learning techniques. Introducing the dispersed foraging strategy into the Salp Swarm Algorithm (SSA), a new improved algorithm named DFSSA is proposed. This algorithm effectively alleviates the imbalance between search speed and traversal caused by the fixed partitioning pattern in traditional SSA. Utilizing the fusion of boosting algorithm and kernel extreme learning machine, an AIT performance prediction model was established. To further investigate the effectiveness of the DFSSA-KELM model, this study conducted an auxiliary diagnostic experiment using the immunotherapy predictive medical data collected by the hospital. The findings indicate that selected indicators, such as blood basophil count, sIgE/tIgE (Der p) and sIgE/tIgE (Der f), play a crucial role in predicting treatment outcome. The classification results showed an accuracy of 87.18% and a sensitivity of 93.55%, indicating that the prediction model is an effective and accurate intelligent tool for evaluating the efficacy of AIT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!