The specific energies and energy densities of lithium-sulfur (Li-S) batteries are influenced by various cell parameters, including the sulfur loading, the sulfur weight percentage in the cathode, and the electrolyte/sulfur ratio. An InS/BiS@rGO heterostructure was obtained by growing indium sulfide nanoparticles on the surface of bismuth sulfide nanoflowers in a graphene oxide (GO) solution via a one-step solvothermal approach. This structure was introduced as a modified separator/dual-layer sulfur cathode for Li-S batteries. The BiS/InS heterointerfaces act as active sites to speed up interfacial electron transfer, along with the entrapment, diffusion, and transformation of lithium polysulfides. A Li-S cell containing a dual-layer sulfur cathode (thin layer of InS/BiS@rGO sandwiched between two thick layers of sulfur) and coupled with an InS/BiS@rGO-coated separator suppressed the polysulfide shuttle effect. The cell based on the dual-layer sulfur cathode technology and operated at a current rate of 0.3C achieved a high capacity (7.1 mAh cm) after the 200th cycle, giving an electrolyte/sulfur ratio (10 µL mg) under a high sulfur loading (11.53 mg cm). These results demonstrate the unique nature of the dual-layer sulfur cathode technique, which can yield high energy density Li-S batteries with high sulfur loadings and low electrolyte/sulfur ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.10.081 | DOI Listing |
Mater Horiz
January 2025
National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
Room-temperature sodium-sulfur (RT Na-S) batteries that typically feature multielectron conversion chemistries can allow an ultrahigh specific capacity of 1675 mA h g and a high energy density of 1275 W h kg but unfortunately suffer from a lot of intractable challenges from sulfur cathodes. These issues cover the poor electronic conductivity of pristine sulfur and solid products, the severe shuttle effect of polysulfides, and the sluggish redox kinetics, The shuttling behavior of polysulfides always leads to cathode/anode instability and performance degeneration. Recently, the emerging catalysis strategy has been demonstrated as a reliable pathway to tackle the central issues caused by sulfur electrochemistry and revitalize RT Na-S batteries.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
Direct regeneration, which involves replenishing lithium in spent cathode materials, is emerging as a promising recycling technique for spent lithium iron phosphate (s-LFP) cathodes. Unlike solid-state regeneration, the aqueous relithiation method consumes less energy, ensures even lithium replenishment, and significantly recovers the capacity of s-LFP. However, liquid-phase lithium replenishment formulations are generally less standardized.
View Article and Find Full Text PDFMolecules
December 2024
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
Lithium-sulfur (Li-S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO composite for advanced lithium-sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect.
View Article and Find Full Text PDFWater Res
January 2025
School of Science, RMlT University, Melbourne, VC 3000. Australia.
Electrochemical recovery of zero-valent sulfur (S) from thiourea (TU) wastewater offers a promising waste-to-value strategy that expects to promote the sulfur resource cycle in water treatment but still suffer from electrode poisoning and sulfur over-oxidation. Herein, we designed a metal-free CNT electrochemical membrane for selective oxidation of thiourea and recovery of S. We found that defect sites on the carbon nanotube surface enable direct electron transfer for thiourea oxidation and may form carbon-sulfur bridge bonds, thereby facilitating the generation of S and urea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!