Objective: Chimeric antigen receptor (CAR) T cell therapy has recently emerged as a promising approach for the treatment of different types of cancer. Improving CAR T cell manufacturing in terms of costs and product quality is an important concern for expanding the accessibility of this therapy. One proposed strategy for improving T cell expansion is to use genetically engineered artificial antigen presenting cells (aAPC) expressing a membrane-bound anti-CD3 for T cell activation. The aim of this study was to characterize CAR T cells generated using this aAPC-mediated approach in terms of expansion efficiency, immunophenotype, and cytotoxicity.
Materials And Methods: In this experimental study, we generated an aAPC line by engineering K562 cells to express a membrane-bound anti-CD3 (mOKT3). T cell activation was performed by co-culturing PBMCs with either mitomycin C-treated aAPCs or surface-immobilized anti-CD3 and anti-CD28 antibodies. Untransduced and CD19-CARtransduced T cells were characterized in terms of expansion, activation markers, interferon gamma (IFN-γ) secretion, CD4/CD8 ratio, memory phenotype, and exhaustion markers. Cytotoxicity of CD19-CAR T cells generated by aAPCs and antibodies were also investigated using a bioluminescence-based co-culture assay.
Results: Our findings showed that the engineered aAPC line has the potential to expand CAR T cells similar to that using the antibody-based method. Although activation with aAPCs leads to a higher ratio of CD8+ and effector memory T cells in the final product, we did not observe a significant difference in IFN-γ secretion, cytotoxic activity or exhaustion between CAR T cells generated with aAPC or antibodies.
Conclusion: Our results show that despite the differences in the immunophenotypes of aAPC and antibody-based CAR T cells, both methods can be used to manufacture potent CAR T cells. These findings are instrumental for the improvement of the CAR T cell manufacturing process and future applications of aAPC-mediated expansion of CAR T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591261 | PMC |
http://dx.doi.org/10.22074/cellj.2023.2001712.1304 | DOI Listing |
Clin Kidney J
January 2025
Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain.
Chimeric antigen receptor T (CAR-T) cell therapy, an emerging personalized immunotherapy for various haematologic malignancies, autoimmune diseases and other conditions, involves the modification of patients' T cells to express a chimeric antigen receptor that recognizes tumour or autoimmune cell antigens, allowing CAR-T cells to destroy cancerous and other target cells selectively. Despite remarkable clinical improvements in patients, multiple adverse effects have been associated with CAR-T cell therapy. Among the most recognized adverse effects are cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome and tumour lysis syndrome.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.
Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.
Nat Immunol
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Chimeric antigen receptor T cells (CAR T cells) with T stem (T) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human T cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RACCR7TCF1 T cell-like CAR T cells from both healthy donors and patients with cancer.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Institute of Haematology, Royal Prince Alfred Hospital, SLHD, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, NSW, Australia.
CD19 directed chimeric antigen receptor (CAR) T-cell therapy is now standard of care for relapsed/refractory large B-cell non-Hodgkin lymphoma. Despite good overall response rates, many patients still experience disease progression and therefore it is important to predict those at risk of relapse following CAR T-cell therapy. We performed a prospective study using a flow cytometric assay at a single treatment centre to assess early CAR T-cell expansion in vivo 6 - 9 days after CAR-T cell infusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!