Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high-performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low-cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all-polymer photovoltaic blends. Remarkably, record-high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery >90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best-performing all-polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain >50% and PCE >10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency-cost- stretchability balance of photovoltaic blend films. The y value of dilute-absorber system is two orders of magnitude greater than those of prior state-of-the-art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202307278 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!