Achieving Record-High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute-absorber Strategy.

Adv Mater

School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China.

Published: February 2024

Organic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high-performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low-cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all-polymer photovoltaic blends. Remarkably, record-high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery >90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best-performing all-polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain >50% and PCE >10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency-cost- stretchability balance of photovoltaic blend films. The y value of dilute-absorber system is two orders of magnitude greater than those of prior state-of-the-art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202307278DOI Listing

Publication Analysis

Top Keywords

mechanical stability
16
photovoltaic blends
12
intrinsically stretchable
12
record-high stretchability
8
tensile properties
8
all-polymer photovoltaic
8
fracture strain
8
photovoltaic
5
achieving record-high
4
mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!