Several research works in the literature have focused on understanding the post-infarction ventricular remodelling phenomenon, but few works have considered the evaluation of the elastic behaviour of the cardiac tissue after a myocardial infarction. This paper presents an investigation focused on predicting the elastic performance of the human heart after a left ventricular apical infarction. The aim is to understand the elastic alterations of the cardiac fibres at different periods after an apical infarct. For this purpose, a hybrid method based on pressure and volume measurements of the left ventricle (LV) at different periods of ventricular remodelling, and the Finite Element Method (FEM), is developed. In addition, several performance indexes are defined to evaluate the heart performance during the ventricular remodelling process. The results show that during the first 2 weeks after a heart infarction, the cardiac fibres must support a much higher structural overload than during normal conditions. This structural overload is proportional to the aneurysm size but diminishes with the time, together with a significant reduction of the ventricular pumping capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09544119231204184 | DOI Listing |
The zebrafish is a valuable model organism for studying cardiac development and diseases due to its many shared aspects of genetics and anatomy with humans and ease of experimental manipulations. Computational fluid-structure interaction (FSI) simulations are an efficient and highly controllable means to study the function of cardiac valves in development and diseases. Due to their small scales, little is known about the mechanical properties of zebrafish cardiac valves, limiting existing computational studies of zebrafish valves and their interaction with blood.
View Article and Find Full Text PDFMater Today Bio
February 2025
Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich, Germany.
In this study, an advanced nanofiber breast cancer model was developed and systematically characterized including physico-chemical, cell-biological and biophysical parameters. Using electrospinning, the architecture of tumor-associated collagen signatures (TACS5 and TACS6) was mimicked. By employing a rotating cylinder or static plate collector set-up, aligned fibers (TACS5-like structures) and randomly orientated fibers (TACS6-like structures) fibers were produced, respectively.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Meharry Medical College, Nashville, USA.
Diabetic cardiac autonomic neuropathy (CAN) is caused by damage to the autonomic nerve fibers that innervate the heart and blood vessels, leading to abnormalities in heart rate control and vascular dynamics. CAN encompasses symptoms such as exercise intolerance, orthostatic hypotension, cardiac denervation syndrome, and nocturnal hypertension. Neurogenic orthostatic hypotension (nOH), resulting from severe diabetic CAN, can cause symptomatic orthostatic hypotension.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, PR China; Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, PR China. Electronic address:
Background: Exercise enhances health by supporting homeostasis, bolstering defenses, and aiding disease recovery. It activates autophagy, a conserved cellular process essential for maintaining balance, while dysregulated autophagy contributes to disease progression. Despite extensive research on exercise and autophagy independently, their interplay remains insufficiently understood.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!