Genome-wide association analysis of heifer livability and early first calving in Holstein cattle.

BMC Genomics

Department of Animal and Avian Sciences, University of Maryland, Room 2123, 8127 Regents Drive, College Park, MD, 20742, USA.

Published: October 2023

AI Article Synopsis

  • Heifer survival and fertility are crucial for the profitability of dairy farms, with a focus on early first calving for better productivity, but the genetic factors influencing these traits are not fully understood.
  • Recent research utilized the CDCB’s genomic database to conduct GWAS analyses, finding no major QTL linked to heifer livability and one significant QTL in the MHC region related to early first calving.
  • Gene-trait associations were explored, revealing a notable number of genes linked to early calving, particularly in immune-related regions, highlighting the importance of the immune system in reproductive traits.

Article Abstract

Background: The survival and fertility of heifers are critical factors for the success of dairy farms. The mortality of heifers poses a significant challenge to the management and profitability of the dairy industry. In dairy farming, achieving early first calving of heifers is also essential for optimal productivity and sustainability. Recently, Council on Dairy Cattle Breeding (CDCB) and USDA have developed new evaluations of heifer health and fertility traits. However, the genetic basis of these traits has yet to be thoroughly studied.

Results: Leveraging the extensive U.S dairy genomic database maintained at CDCB, we conducted large-scale GWAS analyses of two heifer traits, livability and early first calving. Despite the large sample size, we found no major QTL for heifer livability. However, we identified a major QTL in the bovine MHC region associated with early first calving. Our GO analysis based on nearby genes detected 91 significant GO terms with a large proportion related to the immune system. This QTL in the MHC region was also confirmed in the analysis of 27 K bull with imputed sequence variants. Since these traits have few major QTL, we evaluated the genome-wide distribution of GWAS signals across different functional genomics categories. For heifer livability, we observed significant enrichment in promotor and enhancer-related regions. For early calving, we found more associations in active TSS, active Elements, and Insulator. We also identified significant enrichment of CDS and conserved variants in the GWAS results of both traits. By linking GWAS results and transcriptome data from the CattleGTEx project via TWAS, we detected four and 23 significant gene-trait association pairs for heifer livability and early calving, respectively. Interestingly, we discovered six genes for early calving in the Bovine MHC region, including two genes in lymph node tissue and one gene each in blood, adipose, hypothalamus, and leukocyte.

Conclusion: Our large-scale GWAS analyses of two heifer traits identified a major QTL in the bovine MHC region for early first calving. Additional functional enrichment and TWAS analyses confirmed the MHC QTL with relevant biological evidence. Our results revealed the complex genetic basis of heifer health and fertility traits and indicated a potential connection between the immune system and reproduction in cattle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590504PMC
http://dx.doi.org/10.1186/s12864-023-09736-0DOI Listing

Publication Analysis

Top Keywords

early calving
32
heifer livability
16
major qtl
16
mhc region
16
livability early
12
bovine mhc
12
heifer
8
early
8
calving
8
heifer health
8

Similar Publications

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.

View Article and Find Full Text PDF

Periparturient dairy cows experience metabolic adaptations to prepare for increased nutrient requirements of the fetus and the onset of lactation. Adaptations include increased peripheral tissue insulin resistance, which can be evaluated experimentally using intravenous glucose tolerance tests (IVGTT). The objective of this study was to determine if prepartum skeletal muscle reserves and supplementation of branched-chain volatile fatty acids (BCVFA) in the prepartum period affected blood glucose, β-hydroxybutyrate (BHB), and insulin concentrations 2 wk prepartum and 1 wk postpartum utilizing an IVGTT.

View Article and Find Full Text PDF

This observational study aimed to characterize the seasonal dynamics of automated BCS throughout the lactation of Holstein cows in a pasture-based system with year-round calvings. Examining the association between nadir BCS (nBCS; defined as the lowest daily BCS after calving) and peak milk yield within each calving period (calendar seasons equally divided in early and late) was a secondary objective of this research. Retrospective data included 2,164 lactations in 539 primiparous (PRI) and 1,625 multiparous (MLT) Holstein cows that calved from July 2021 to June 2023 in a commercial dairy farm located in Southern Chile.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of the weaning calves at 2 ages (early vs. late) and 2 weaning paces (abrupt over 3 d vs. gradual over 14 d) on plasma oxylipids.

View Article and Find Full Text PDF

The primary objective of the study was to characterize concentrations and yields of lactoferrin (LF), insulin, and IGF-I in colostrum, transition milk (TM), and whole milk (WM) of multiparous (MP) and primiparous (PP) cows. A secondary objective was to determine associations between colostrum and TM components (fat, protein, lactose), IgG, and bioactive compounds (oligosaccharides, LF, insulin, IGF-I; defined as compounds present in micro quantities that stimulate physiological responses systemically or locally within the neonate). Holstein cows (10 MP and 10 PP) were assigned to the study at calving and colostrum was collected 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!