One of the barriers to further commercialization of the proton exchange membrane fuel cell (PEMFC) is hydrogen storage. Conventional methods are based on pressurizing the hydrogen up to 700 bar. The focus of this study is to characterize the hydrogen storage capacity of hydrogen tanks filled with MOF-5 at low pressures. Thus, Computational Fluid Dynamic (CFD) was used in a transient condition to analyze the hydrogen storage. Benefiting from the CFD model, three input parameters of the MOF-5, namely, density, specific heat, and conductivity, were utilized to develop an artificial neural network (ANN) model to find the highest mass of adsorption at the lowest required pressure. The optimum possible MOF among 729220 different possibilities, which enables the adsorption of 0.0099 kg at 139 bar, was found using a newly defined parameter called Pressure Adsorption Parameter (PAP).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590379PMC
http://dx.doi.org/10.1038/s41598-023-45391-xDOI Listing

Publication Analysis

Top Keywords

hydrogen storage
12
computational fluid
8
artificial neural
8
hydrogen
6
simulation optimization
4
optimization impacts
4
impacts metal-organic
4
metal-organic frameworks
4
frameworks hydrogen
4
adsorption
4

Similar Publications

Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability.

View Article and Find Full Text PDF

The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.

View Article and Find Full Text PDF

Self-Organized Protonic Conductive Nanochannel Arrays for Ultra-High-Density Data Storage.

Nano Lett

January 2025

National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.

While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.

View Article and Find Full Text PDF

Background: Microbial cholesterol oxidase (ChoX) has wide clinical and industrial applications; therefore, many efforts are being made to identify promising sources. This study aimed to isolate a novel ChoX-producing bacterial strain from whey samples.

Results: The most efficient strain was selected based on extracellular ChoX-producing ability and characterized as Escherichia fergusonii (E.

View Article and Find Full Text PDF

Applying hollow octahedron PtNPs/Pd-CuO nanozyme and highly conductive AuPtNPs/Ni-Co NCs to colorimetric -electrochemical dual-mode aptasensor for AFB1 detection.

Anal Chim Acta

February 2025

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.

Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!