The discovery of highly enantioselective catalysts and elucidating their generality face great challenges due to the complex multidimensional chemical space of asymmetric catalysis and inefficient screening methods. Here, we develop a general strategy for ultra-high-throughput mapping of the chemical space of asymmetric catalysis by escaping the time-consuming chiral chromatography separation. The ultrafast ( ~ 1000 reactions/day) and accurate (median error < ±1%) analysis of enantiomeric excess are achieved through the ion mobility-mass spectrometry combines with the diastereoisomerization strategy. A workflow for accelerated asymmetric reaction screening is established and verified by mapping the large-scale chemical space of more than 1600 reactions of α-asymmetric alkylation of aldehyde with organocatalysis and photocatalysis. Importantly, a class of high-enantioselectivity primary amine organocatalysts of 1,2-diphenylethane-1,2-diamine-based sulfonamides is discovered by the accelerated screening, and the mechanism for high-selectivity is demonstrated by computational chemistry. This study provides a practical and robust solution for large-scale screening and discovery of asymmetric reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590410PMC
http://dx.doi.org/10.1038/s41467-023-42446-5DOI Listing

Publication Analysis

Top Keywords

chemical space
12
space asymmetric
12
asymmetric catalysis
12
ultra-high-throughput mapping
8
mapping chemical
4
catalysis enables
4
enables accelerated
4
accelerated reaction
4
reaction discovery
4
discovery discovery
4

Similar Publications

Identification of key genes related to growth of largemouth bass () based on comprehensive transcriptome analysis.

Front Mol Biosci

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Introduction: Largemouth bass is an economically important farmed freshwater fish species that has delicious meat, no intermuscular thorns, and rapid growth rates. However, the molecular regulatory mechanisms underlying the different growth and developmental stages of this fish have not been reported.

Methods: In this study, we performed histological and transcriptomic analyses on the brain and dorsal muscles of largemouth bass at different growth periods.

View Article and Find Full Text PDF

In situ optical analytical spectroscopies offer great geochemical insights due to their capability to resolve the chemical composition of regolith surfaces of rocky celestial bodies. The use of suitable calibration targets improves the precision of mineral determination, which is of critical importance for short-living, low-mobility landers, and enables, in special cases, determination of elemental composition. We investigate the capabilities of three space-relevant optical analytical techniques used for in situ mineralogical analysis, i.

View Article and Find Full Text PDF

Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals.

J Cheminform

December 2024

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties.

View Article and Find Full Text PDF

Where the microbes aren't.

FEMS Microbiol Rev

December 2024

UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93JZ, UK.

Although a large fraction of Earth's volume and most places beyond the planet lack life because physical and chemical conditions are too extreme, intriguing scientific questions are raised in many environments within or at the edges of life's niche space in which active life is absent. This review explores the environments in which active microorganisms do not occur. Within the known niche space for life, uninhabited, but habitable physical spaces potentially offer opportunities for hypothesis testing, such as using them as negative control environments to investigate the influence of life on planetary processes.

View Article and Find Full Text PDF

Impacts of acid mine drainage remediation in the largest gold mine of Latin America on natural water bodies in the Dominican Republic.

Environ Sci Pollut Res Int

December 2024

Universidad Autónoma de Santo Domingo, Facultad de Ciencias, Zona Universitaria, Distrito Nacional, Santo Domingo, Dominican Republic.

Impacts of the acid mine drainage (AMD) remediation are investigated on the largest gold mine in Latin America, located in the Dominican Republic. Geochemical analysis of suspended matter in water performed in 2022 on water bodies located downstream to the mine, namely, the Margajita River and Lake Hatillo, are compared with analyses made in 2007, before the AMD remediation. The results for the Margajita River show a strong decrease in heavy metal and metalloid concentrations in the dissolved phase for Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sb, and Pb (between 89.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!