A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. | LitMetric

Background: Geographic atrophy is a leading cause of progressive, irreversible vision loss. The objectives of OAKS and DERBY were to assess the efficacy and safety of pegcetacoplan compared with sham treatment in patients with geographic atrophy.

Methods: OAKS and DERBY were two 24-month, multicentre, randomised, double-masked, sham-controlled, phase 3 studies, in which patients aged 60 years and older with geographic atrophy secondary to age-related macular degeneration were enrolled at 110 clinical sites and 122 clinical sites worldwide, respectively. Patients were randomly assigned (2:2:1:1) by central web-based randomisation system to intravitreal 15 mg per 0·1 mL pegcetacoplan monthly or every other month, or sham monthly or every other month using stratified permuted block randomisation (stratified by geographic atrophy lesion area at screening, history or presence of active choroidal neovascularisation in the eye not under assessment, and block size of six). Study site staff, patients, reading centre personnel, evaluating physicians, and the funder were masked to group assignment. Sham groups were pooled for the analyses. The primary endpoint was the change from baseline to month 12 in the total area of geographic atrophy lesions in the study eye based on fundus autofluorescence imaging, in the modified intention-to-treat population (ie, all patients who received one or more injections of pegcetacoplan or sham and had a baseline and at least one post-baseline value of lesion area). Key secondary endpoints (measured at 24 months) were change in monocular maximum reading speed of the study eye, change from baseline in mean functional reading independence index score, change from baseline in normal luminance best-corrected visual acuity score, and change from baseline in the mean threshold sensitivity of all points in the study eye by mesopic microperimetry (OAKS only). Safety analyses included patients who were randomly assigned and received at least one injection of pegcetacoplan or sham. The now completed studies are registered with ClinicalTrials.gov, NCT03525613 (OAKS) and NCT03525600 (DERBY).

Findings: Between Aug 30, 2018, and July 3, 2020, 1258 patients were enrolled in OAKS and DERBY. The modified intention-to-treat populations comprised 614 (96%) of 637 patients in OAKS (202 receiving pegcetacoplan monthly, 205 pegcetacoplan every other month, and 207 sham) and 597 (96%) of 621 patients in DERBY (201 receiving pegcetacoplan monthly, 201 pegcetacoplan every other month, and 195 sham). In OAKS, pegcetacoplan monthly and pegcetacoplan every other month significantly slowed geographic atrophy lesion growth by 21% (absolute difference in least-squares mean -0·41 mm, 95% CI -0·64 to -0·18; p=0·0004) and 16% (-0·32 mm, -0·54 to -0·09; p=0·0055), respectively, compared with sham at 12 months. In DERBY, pegcetacoplan monthly and pegcetacoplan every other month slowed geographic atrophy lesion growth, although it did not reach significance, by 12% (-0·23 mm, -0·47 to 0·01; p=0·062) and 11% (-0·21 mm, -0·44 to 0·03; p=0·085), respectively, compared with sham at 12 months. At 24 months, pegcetacoplan monthly and pegcetacoplan every other month slowed geographic atrophy lesion growth by 22% (-0·90 mm, -1·30 to -0·50; p<0·0001) and 18% (-0·74 mm, -1·13 to -0·36; p=0·0002) in OAKS, and by 19% (-0·75 mm, -1·15 to -0·34; p=0·0004) and 16% (-0·63 mm, -1·05 to -0·22; p=0·0030) in DERBY, respectively, compared with sham. There were no differences in key secondary visual function endpoints at 24 months. Serious ocular treatment-emergent adverse events were reported in five (2%) of 213, four (2%) of 212, and one (<1%) of 211 patients in OAKS, and in four (2%) of 206, two (1%) of 208, and two (1%) of 206 patients in DERBY receiving pegcetacoplan monthly, pegcetacoplan every other month, and sham, respectively, at 24 months. New-onset exudative age-related macular degeneration was reported in 24 (11%), 16 (8%), and four (2%) patients in OAKS, and in 27 (13%), 12 (6%), and nine (4%) patients in DERBY receiving pegcetacoplan monthly, pegcetacoplan every other month, and sham, respectively, at 24 months.

Interpretation: Pegcetacoplan, the first treatment approved by the US Food and Drug Administration for geographic atrophy, slowed geographic atrophy lesion growth with an acceptable safety profile.

Funding: Apellis Pharmaceuticals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(23)01520-9DOI Listing

Publication Analysis

Top Keywords

geographic atrophy
32
pegcetacoplan monthly
24
pegcetacoplan month
20
oaks derby
16
atrophy lesion
16
change baseline
16
pegcetacoplan
15
compared sham
12
study eye
12
monthly pegcetacoplan
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!