The inherent highly hydrophilic feature of cellulose-based paper hinders its application in many fields. Herein, a cellulose-based hydrophobic paper was fabricated based on surface chemical modification. Firstly, the hydrophobic acrylate components were bonded to the cellulose acetoacetate (CAA) fibers to obtain CAA graft acrylate (CAA-X) fibers through Michael addition reaction. Subsequently, CAA-X fibers were processed into paper via wet papermaking technology. The resulting paper exhibited good hydrophobic performance (water contact angle was up to 135°) with an air permeability of 24.8 μm/Pa·s. The hydrophobicity of paper was very stable and remained even after treating with different solvents. Moreover, the hydrophobic properties of this paper could be adjusted by changing the type of acrylate component. It should be noted that the surface modification strategy has no obvious effects on the whiteness (79.8%), writing, and printing properties of the cellulose fibers. Thus, it is a simple, benign, and efficient strategy for the construction of cellulose-based hydrophobic paper, which has great potential to be used in paper tableware, oil-water separation, watercolor protection, and food packaging fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127513 | DOI Listing |
Int J Biol Macromol
January 2025
Key Lab of Paper Science and Technology of Ministry of Elucation, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:
Environmental pollution and health problems caused by traditional non-degradable fossil-based plastics are significant concerns, rendering green and renewable bio-based materials, such as cellulose and C-Priamine (1074), as attractive substitutes. In particular, the low plasticity of cellulose can be optimized using soft alkyl chains. Herein, multifunctional cellulose-based materials were constructed via covalent adaptable networks using the Schiff base reaction of oxidized microcrystalline cellulose with varying aldehyde (dialdehyde cellulose (DAC)) contents and C-Priamine (1074).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. Electronic address:
High-performance solar interface evaporators provide a promising, sustainable, and cost-effective solution to the global freshwater crisis through seawater purification. However, achieving a delicate balance between maximizing the evaporation rate and ensuring continuous, stable, and durable operation presents a critical challenge. Herein, we present a biomimetic cellulose/polypyrrole-coated silica/graphene evaporator with self-assembled nanofiber networks and vertically aligned vessels for enhanced salt resistance.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Federal University of Sergipe, 49400-000 São Cristóvão, SE, Brazil.
Cellulose-based materials are promising adsorbents for pollutants and other classes of compounds. Here, we report the preparation of hydrogels via chemical cross-linking of microcrystalline cellulose oxidized by the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). The cross-linking process was carried out in the presence of modifiers such as β-cyclodextrin in order to insert hydrophobic cavities or κ-carrageenan due to the presence of negative charges along the molecular chains.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. Electronic address:
Fruits are susceptible to ethylene ripening and microbial infestation, which can lead to spoilage and further significant economic losses. Thus, using functional preservation materials is an effective controlling technology to improve the post-harvest quality and extend the shelf life of fruits. Hence, a dual-function cellulose-based paper with exceptional antibacterial efficiency, favourable ethylene removal performance, improved mechanical and hydrophobic properties was prepared by covalently grafted antibacterial guanidine salt and surface-modified ethylene scavenger.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China. Electronic address:
Cellulose-based paper is inherently poor in hydrophobicity and mechanical strength, limiting its practical applications in daily life such as packaging materials, water-resistant labels, and disposable tableware. This study aimed to develop an effective and eco-friendly strategy to address these limitations by enhancing the hydrophobicity and mechanical properties of cellulose paper. To achieve this, an internal sizing agent was prepared by combining (3-glycidoxypropyl) trimethoxy (GPS) with natural rosin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!