Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms.

J Biol Chem

Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA. Electronic address:

Published: December 2023

In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679506PMC
http://dx.doi.org/10.1016/j.jbc.2023.105361DOI Listing

Publication Analysis

Top Keywords

n-linked glycosylation
8
multiple n-linked
4
glycosylation sites
4
sites critically
4
critically modulate
4
modulate synaptic
4
synaptic abundance
4
abundance neuroligin
4
neuroligin isoforms
4
isoforms years
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

UT Health San Antonio, San Antonio, TX, USA.

Background: Glycosylation is the most common post-translational modification in the brain. Aberrant glycosylation patterns are present in cerebrospinal fluid and brain tissue from Alzheimer's disease (AD) patients. Specifically, dysregulation of a particular form of terminal glycoconjugate modification, sialylation, has been identified in AD.

View Article and Find Full Text PDF

The CHO VRC01 cell line produces an anti-HIV IgG1 monoclonal antibody containing N-linked glycans on both the Fab (variable) and Fc (constant) regions. Site-specific glycan analysis was used to measure the complex effects of cell culture process conditions on Fab and Fc glycosylation. Experimental data revealed major differences in glycan fractions across the two sites.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

Aldolase B Deficient Mice Are Characterized by Hepatic Nucleotide Sugar Abnormalities.

J Inherit Metab Dis

January 2025

Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, The Netherlands.

Hereditary fructose intolerance (HFI) is characterized by liver damage and a secondary defect in N-linked glycosylation due to impairment of mannose phosphate isomerase (MPI). Mannose treatment has been shown to be an effective treatment in a primary defect in MPI (i.e.

View Article and Find Full Text PDF

Pathogenicity and antigenic characterization of a novel highly virulent lineage 3 porcine reproductive and respiratory syndrome virus 2.

J Microbiol Immunol Infect

December 2024

Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan. Electronic address:

Background/purpose: Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen with a negative economic impact on the global swine industry. In 2019, a suspected highly pathogenic strain, NPUST-108-929/2019 (108-929), was isolated from a pig farm in Pingtung with an outbreak of high mortality and analyzed. The characteristics of PRRSV 108-929 have barely been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!