Taste receptor type 1 member 3 mediates diet-induced cognitive impairment in mice.

Life Sci

Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Published: December 2023

Aims: Long-term consumption of a western diet (WD), which is characterized by high intake of saturated fats and sugary drinks, causes cognitive impairment. However, the molecular mechanism by which WD induces cognitive impairment remains unclear. Taste receptor type 1 member 3 (TAS1R3), activated by ligands of WD, is expressed in extra-oral tissues, including the brain, and particularly in the hippocampus. This study investigated whether TAS1R3 regulates WD-induced cognitive impairment in mice.

Main Methods: Male C57BL/6J wild-type (WT) and Tas1r3 knock-out (KO) mice were fed either a normal diet (ND) or WD for 18 weeks. Cognitive functions were assessed using novel object recognition and Barnes maze tests. The mechanisms underlying WD-induced cognitive impairment were assessed using RNA-sequencing and bioinformatics analysis.

Key Findings: Cognitive impairment was observed in WT mice fed WD (WT-WD) compared with WT-ND mice. Conversely, mice lacking TAS1R3 were not cognitively impaired even under long-term WD feeding. Hippocampal transcriptome analysis revealed upregulated AMP-activated protein kinase (AMPK) signaling and increased AMPK-targeted sirtuin 3 expression in KO-WD mice. Pathway enrichment analysis showed that response to oxidative stress was downregulated, whereas neurogenesis was upregulated in dentate gyrus of KO-WD mice. In vitro studies validated the findings, indicating that Tas1r3 knockdown directly upregulated decreased sirtuin 3 expression, its downstream genes-related to oxidative stress, and apoptosis induced by WD condition in hippocampal neuron cells.

Significance: TAS1R3 acts as a critical mediator of WD-induced cognitive impairment in mice, thereby offering potential as a novel therapeutic target to prevent WD-induced cognitive impairment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2023.122194DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
32
wd-induced cognitive
16
cognitive
9
taste receptor
8
receptor type
8
type member
8
impairment
8
mice
8
impairment mice
8
mice fed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!