Survival of Foodborne Pathogens in Low and Nonalcoholic Craft Beer.

J Food Prot

Department of Food Science, Cornell AgriTech, Geneva, NY 14456, USA.

Published: December 2023

Breweries and beverage companies have recently been interested in creating innovative beer varieties that deviate from traditional beer styles, with either low-alcohol content <2.5% alcohol by volume (ABV) or the absence of alcohol altogether (<0.5% ABV). Traditional beers (up to 10% ABV) contain numerous intrinsic and extrinsic factors preventing pathogens from proliferation or propagation. Physiochemical properties such as a low pH, presence of ethanol and hop acids, limited oxygen, and specific processing techniques, including wort boiling, pasteurization, filtration, cold storage, and handling, all contribute to microbial stability and safety. The potential change or absence in one or more of these antimicrobial hurdles can render the final product susceptible to pathogen survival and growth. In this study, the effect of pH, storage temperature, and ethanol concentration on the growth or die-off of foodborne pathogens in low and nonalcoholic beers was evaluated. pH and ethanol concentrations were adjusted from their initial values of 3.65 and <0.50% ABV to pHs 4.20, 4.60, and 4.80; and 3.20 ABV, respectively. The samples were inoculated with individual five-strain cocktails of E. coli O157:H7, S. enterica, and L. monocytogenes, then stored at two different temperatures (4 and 14°C) for 63 days. Microbial enumeration was performed using selective agar with incubation at 35°C. Results showed that nonalcoholic beers allowed for pathogen growth and survival, as opposed to the low-alcoholic ones. E. coli O157:H7 and S. enterica grew approximately 2.00 log  at 14°C, but no growth was observed at 4°C. L. monocytogenes was more susceptible and fell at, or below, the detection limit rapidly in all the conditions tested. The results show that storage temperature is critical in preventing the growth of pathogens. pH did not appear to have a significant effect on the survival of pathogens (p < 0.05). This challenge study demonstrates the need for beverage manufacturers to prioritize and maintain food safety plans along with practices specific to low- and nonalcoholic beer manufacturers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jfp.2023.100183DOI Listing

Publication Analysis

Top Keywords

survival foodborne
4
foodborne pathogens
4
pathogens low
4
low nonalcoholic
4
nonalcoholic craft
4
craft beer
4
beer breweries
4
breweries beverage
4
beverage companies
4
companies interested
4

Similar Publications

non-typhoidal is a major contributor to diarrheal diseases, with over 2600 serovars identified across diverse environments. In Mexico, serovars Newport and Anatum have shown a marked increase, especially in foodborne disease, posing a public health problem. We conducted a cross-sectional study from 2021 to 2023 using active epidemiological surveillance to assess contamination in ground beef and pork at butcher shops nationwide.

View Article and Find Full Text PDF

Various serotypes have caused numerous foodborne outbreaks associated with food vehicles in different categories. This study provides evidence on the occurrence and inter-relations between serotypes and the number of deaths mediated by the number of illnesses and hospitalizations. Confirmed foodborne outbreaks of serotypes (n = 2868) that occurred between 1998 and 2021 were obtained from the Centers for Disease Control and Prevention National Outbreak Reporting System.

View Article and Find Full Text PDF

Natural Mutation of PrfA K10N/T151A Enhances Serotype 4h Virulence.

Foodborne Pathog Dis

January 2025

College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China.

PrfA is a key virulence regulator for (Lm) responding to host environment. Here we report that the natural mutation in PrfA enhanced the pathogenicity of hypervirulent serotype 4h . We characterized the phylogenetic tree of PrfA, and found that PrfA prevalently distributed in all serotype 4h isolates.

View Article and Find Full Text PDF

spp., and Threats to the Food Industry and Public Health.

Foodborne Pathog Dis

January 2025

Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.

Foodborne pathogens have always been of public health concern and represent safety issues for food processors. These pathogens develop new ways to overcome antibiotics, survive in different environmental conditions, and the ability to reproduce in many hostile environments configure them as serious health hazards. Considering the huge number of microorganisms, three bacterial representatives were selected to provide a better knowledge about the question of which one is the worst enemy for humans, from the food industry point of view, taking into consideration their multiplication specificity, virulence, and resistance.

View Article and Find Full Text PDF

is a foodborne pathogen linked to severe infections in infants and often associated with contaminated powdered infant formula. The RecA protein, a key player in DNA repair and recombination, also influences bacterial resilience and virulence. This study investigated the impact of deletion on the pathogenicity and environmental stress tolerance of BAA-894.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!