In this work, we report a one-step synthesis of ternary Z-scheme Co(OH)/CeO-g-CN (CoCe-CN) heterostructure via hydrothermal method. Owing to the modification of Co(OH) and CeO, the existence of Co(OH) as an electron acceptor-donor center between CeO and g-CN accelerates the electron transfer and provides extra OH reaction pathway for photocatalytic oxidation of NO. As a result, 50CoCe-CN (Co and Ce accounting for 25% mass ratio separately) achieved a 53.5% conversion efficiency of NO at 600 ppb concentration, which is 1.82 times that of g-CN under visible light The results of the DFT analysis and element distribution of cobalt and ceria provide convincing evidence supporting the existence of a novel multi-layer structure in the CoCe-CN photocatalyst. This structure involves the loading of CeO and Co(OH) on the g-CN surface, and Co(OH) as a co-catalyst introduced between CeO and g-CN realizes the synergy between CeO and Co(OH) which further improve the photocatalytic properties. The higher photocatalytic efficiencies observed in the CoCe-CN photocatalysts compared to those containing only cobalt (Co-CN) or ceria (Ce-CN) provide further evidence of the synergistic effect of these two elements. This work demonstrates a more efficient and effective ternary photocatalytic system, with greater practical potential for photocatalytic oxidation of NO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132744DOI Listing

Publication Analysis

Top Keywords

photocatalytic oxidation
12
visible light
8
ceo g-cn
8
ceo cooh
8
photocatalytic
6
cooh
5
ceo
5
facile synthesis
4
synthesis multi-layer
4
multi-layer cooh/ceo-g-cn
4

Similar Publications

Degradation of AFB in edible oil by aptamer-modified TiO composite photocatalytic materials: Selective efficiency, degradation mechanism and toxicity.

Food Chem

December 2024

Food Engineering Technology Research Center/Key Laboratory of Henan Province, College of Food Science and Technology, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China. Electronic address:

Most of the excessive aflatoxins in peanut oil are present at lower levels, and few photocatalysts have been reported for degrading low concentrations of aflatoxin B (AFB). This study employed aptamer-modified magnetic graphene oxide/titanium dioxide (MGO/TiO-aptamer) photocatalysts to degrade low concentrations of AFB in peanut oil, thoroughly investigating their selective efficiency, degradation mechanism, and product toxicity. The results indicated that the modification of aptamers on the surface of photocatalytic materials can enhance the selectivity of photocatalysts for AFB in peanut oil.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Carbon, hydrogen, nitrogen and chlorine isotope fractionation during 3-chloroaniline transformation in aqueous environments by direct photolysis, TiO photocatalysis and hydrolysis.

Water Res

December 2024

School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany. Electronic address:

This study investigates carbon, hydrogen, nitrogen and chlorine isotope fractionation during the transformation of 3-chloroaniline (3-CA) via direct photolysis, TiO photocatalytic degradation at neutral condition and hydrolysis at pH 3, pH 7 and pH 11. Direct photolysis and ∙OH reaction (UV/HO) showed similar inverse isotope fractionation (ε) for carbon (1.9 ± 0.

View Article and Find Full Text PDF

Photocatalytic Alkene-Migrative Chain Elongation of 2-Phosphinostyrenes with Aldehydes.

Org Lett

December 2024

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.

The photocatalytic alkene-migrative chain elongation reaction of 2-phosphinostyrenes with aldehydes under mild conditions in response to blue light was demonstrated. A broad range of aldehydes, both aliphatic and aromatic, participated in this reaction to afford alkene-phosphine oxides in a -selective manner. Mechanistic experiments suggested the formation of benzophospholene-based ylide intermediates via photocatalytic cyclization of phosphinostyrenes followed by solvent-mediated proton transfer under base-free reaction conditions.

View Article and Find Full Text PDF

Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!