Four-eyed sleeper (Bostrychus sinensis) is a commercially important sea water fish, and the male individuals exhibit significant advantages in somatic growth and stress resistance, so developing sex control strategy to create all-male progeny will produce higher economic value. However, little is known about the genetic background associated with sex differentiation in this species. In this study, we investigated gonadal development and uncovered critical window stages of sexual differentiation (about 2 mph), transition from proliferation to differentiation in female germ stem cells (GSCs) (2-3 mph) and male GSCs (3-4 mph). De novo transcriptome analysis revealed candidate genes and signaling pathways associated with sexual differentiation and gonadal development in four-eyed sleeper. The results showed that sox9 and zglp1 were the earliest sex-biased transcription factors during sex differentiation. Down-regulation of chemokine, cytokines-cytokine receptors and up-regulation of cellular senescence pathway might be involved in GSC differentiation. Weighted gene correlation network analysis showed that metabolic pathway and occludin were the hub signaling and gene in ovarian development, meanwhile the MAPK signaling pathways, cellular senescence pathway and ash1l (histone H3-lysine4 N-trimethyltransferase) were the hub pathways and gene in testicular development. The present work elucidated the developmental processes of sexual differentiation and gonadal development and revealed their associated revealed genes and signaling pathways in four-eyed sleeper, providing theoretical basis for developing sex-control techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2023.101148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!