To realize rapid capture and quantification of food-borne spores and prevent their potential harm, FeO@PEI@Ag@PEI core-shell structure nanoparticles were combined with flower-like AgNPs for double enhancement and efficient capture of spores. The developed sensor showed excellent reproducibility and SERS enhancement factor (AEF) is 4.6 × 10. Orthogonal partial least-squares discrimination analysis and linear discriminant analysis accurately identified the three spores (Bacillus subtilis, Bacillus cereus, and Clostridium perfringens), and the qualitative identification accuracy of linear discriminant analysis was 100 %. Efficient enrichment of B. subtilis spores was realized within 5 min, with a detection limit of 3 cfu/mL. Spiked tests revealed that this sensor was effective in detecting spores in milk, orange juice, and water samples, with recovery ratio of 95.2-103.9 % and relative standard deviation of 3.1-7.7 %. Thus, the developed sensor was accurate and reliable, and could achieve rapid identification and quantitative detection of food-borne spores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.123512 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!