Heavy metal pollution alters reproductive performance and mate choice in an anuran, Strauchbufo raddei.

Mar Pollut Bull

Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:

Published: November 2023

Understanding the effects of pollution on reproductive performance and sexual selection is crucial for the conservation of biodiversity in an increasingly polluted world. The present study focused on the effect of environmental heavy metal pollution on sexually selected traits, including morphological characteristics and acoustic parameters, as well as mate choice in Strauchbufo raddei, an anuran species widely distributed in Northern China. The results showed that male courtship signals, including forelimb length, forelimb force, and advertisement calls, have evolved under the pressure of heavy metal pollution in young S. raddei. In addition, the breeding age was lower in the polluted areas, and younger individuals had more mating opportunities. However, males with heightened reproductive performance did not show the expected higher individual quality. The current study suggests that exposure to heavy metal pollution can induce stress in males, altering reproductive performance and further disrupting mate choice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115675DOI Listing

Publication Analysis

Top Keywords

heavy metal
16
metal pollution
16
reproductive performance
16
mate choice
12
strauchbufo raddei
8
pollution
5
heavy
4
pollution alters
4
reproductive
4
alters reproductive
4

Similar Publications

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

Recent progress in electrochemical recycling of waste NdFeB magnets.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.

Neodymium iron boron (NdFeB) magnets are critical components in green energy technologies and have received increasing attention due to the limited availability of the raw materials, specifically rare earth elements (REEs). The supply risks associated with primary mining of RE ores, which have significant environmental impacts, underscore the necessity for recycling RE secondary resources. Waste NdFeB magnets, generated during manufacturing processes and recovered from end-of-life products, represent valuable RE secondary resources.

View Article and Find Full Text PDF

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!