Complementary role of peripheral and central autonomic nervous system on insulin-like growth factor-1 activation to prevent fatty liver disease.

Hepatol Int

Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.

Published: February 2024

AI Article Synopsis

  • Insulin-like growth factor-1 (IGF-1) plays a significant role in non-alcoholic fatty liver disease (NAFLD) by reducing fatty accumulation in the liver, activated by growth hormone (GH), but the specific interplay between GH and IGF-1 in NAFLD development needs further exploration.
  • The study investigated GH and IGF-1 levels in mouse models of diet-induced NAFLD, examining how the autonomic nervous system and hypothalamic neuropeptides influence GH secretion and IGF-1 expression.
  • The results suggest that IGF-1 release, influenced by neural pathways, is crucial for maintaining liver function in NAFLD, highlighting its potential as a target for therapeutic interventions.

Article Abstract

Background: Insulin-like growth factor-1 (IGF-1) is involved in the pathology of non-alcoholic fatty liver disease (NAFLD) and ameliorates fatty infiltration in the liver. It is activated by growth hormone (GH); however, the role of GH-IGF-1 axis in NAFLD developmental phase has not been well identified. Therefore, in this study, we focused on the effect of IGF-1 in NAFLD pathology and GH excretion activation from the pituitary gland by peripheral autonomic neural pathways relaying liver-brain-gut pathway and by central neuropeptides.

Methods: GH and IGF-1 levels were assessed in wild-type and melanocortin-4 receptor knockout mice upon the development of diet-induced NAFLD. The contribution of the peripheral autonomic nervous system connecting the liver-brain-gut axis was assessed by its blockade using capsaicin and that of the central nervous system was assessed by the expression of hypothalamic brain-derived neurotrophic factor (BDNF) and corticotropin-releasing factor (CRH), which activates GH release from the pituitary gland.

Results: In the NAFLD mouse models, the levels of GH and IGF-1 increased (p < .05). Further, hepatic fatty infiltration was suppressed even under peripheral autonomic nervous system blockade (p < .001), which inhibited gastric ghrelin expression. In mice with peripheral autonomic nervous blockade, hypothalamic BDNF and CRH were inhibited (p < .05), resulting in GH and IGF-1 excretion, whereas other neuropeptides of somatostatin and cortistatin showed no changes. These complementary effects were canceled in melanocortin-4 receptor knockout mice, which diminished BDNF and CRH release control.

Conclusions: Our study demonstrates that the release of IGF-1 by the nervous system is a key factor in maintaining the pathological homeostasis of NAFLD, suggesting its therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12072-023-10601-1DOI Listing

Publication Analysis

Top Keywords

nervous system
12
autonomic nervous
8
insulin-like growth
8
growth factor-1
8
fatty liver
8
liver disease
8
peripheral autonomic
8
nafld
5
complementary role
4
role peripheral
4

Similar Publications

Clinical benefits of central pancreatectomy for a patient with pancreatic schwannoma and diabetes.

World J Surg Oncol

January 2025

Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, China.

Schwannomas are tumors that originate from the glial cells of the nervous system and can occur on myelinated nerve fibers throughout the body, especially in the craniofacial region. However, pancreatic schwannomas are extremely rare. We report a case of a pancreatic schwannoma that was difficult to differentiate from other pancreatic tumors preoperatively.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.

View Article and Find Full Text PDF

Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.

View Article and Find Full Text PDF

Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Of note, prenatal Zika infection can cause a spectrum of neurodevelopmental disorders, including congenital Zika syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!