A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimization of low-grade coal and refuse-derived fuel blends for improved co-combustion behavior in coal-fired power plants. | LitMetric

Optimization of low-grade coal and refuse-derived fuel blends for improved co-combustion behavior in coal-fired power plants.

Environ Sci Pollut Res Int

School of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan, 44610, Republic of Korea.

Published: November 2023

This study is aimed at utilizing three waste materials, i.e., solid refuse fuel (SRF), tire derived fuel (TDF), and sludge derived fuel (SDF), as eco-friendly alternatives to coal-only combustion in co-firing power plants. The contribution of waste materials is limited to ≤5% in the composition of the mixed fuel (coal + waste materials). Statistical experimental design and response surface methodology are employed to investigate the effect of mixed fuel composition (SRF, TDF, and SDF) on gross calorific value (GCV) and ash fusion temperature (AFT). A quadratic model is developed and statistically verified to apprehend mixed fuel constituents' individual and combined effects on GCV and AFT. Constrained optimization of fuel blend, i.e., GCV >1,250 kcal/kg and AFT >1,200 °C, using the polynomial models projected the fuel-blend containing 95% coal with 3.84% SRF, 0.35% TDF, and 0.81% SDF. The observed GCV of 5,307 kcal/kg and AFT of 1225 °C for the optimized blend were within 1% of the model predicted values, thereby establishing the robustness of the models. The findings from this study can foster sustainable economic development and zero CO emission objectives by optimizing the utilization of waste materials without compromising the GCV and AFT of the mixed fuels in coal-fired power plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-30471-2DOI Listing

Publication Analysis

Top Keywords

waste materials
16
power plants
12
mixed fuel
12
fuel
8
coal-fired power
8
derived fuel
8
gcv aft
8
kcal/kg aft
8
gcv
5
aft
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!